Nonlinear dynamics of a spinor Bose-Einstein condensate in a double-well potential
Tóm tắt
We examine the nonlinear dynamical behavior of a spinor Bose-Einstein condensate in a double-well potential. Considering a condensate with large number of atoms, such that it can be described using the mean field theory, we separate the spinor dynamics from the spatial dynamics under the single-mode approximation. We limit ourselves to certain initial conditions under which the spatial mode is frozen so that we can focus on the spinor dynamics only. Identifying collective spin variables of our system, we derive the corresponding nonlinear equations of motion for them. Employing standard stability analysis, we find and characterize fixed points of the system. For a wide range of physical parameters such as tunneling strength and non-linear interactions, as well as for various initial preparations of the system, we identify qualitatively different dynamical regimes possible in the system. In particular, complete and incomplete oscillations of spin variables between quantum wells are found. We also show that by bringing some fixed points close to each other in the phase space of the system, it is possible to induce amplitude modulation to those otherwise regular tunneling oscillations.
Tài liệu tham khảo
A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987); A. J. Leggett, Chance and Matter, Ed. by J. Souletie, J. Vannimenus, and R. Stora (North-Holland, Amsterdam, 1987).
A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
A. Garg, Europhys. Lett. 22, 205 (1993).
E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge Univ. Press, Cambridge, 1998), Vol. 4.
Quantum Tunneling of Magnetization, Ed. by L. Gunther and B. Barbara (Kluwer, Dordrecht, 1995), Vol. 31.
J. Villain, F. Hartman-Boutron, R. Sessoli, et al., Europhys. Lett. 27, 159 (1994).
T. Lis, Acta Crystallogr. 36, 2042 (1980).
K. Wieghart, K. Pohl, I. Jibril, et al., Angew. Chem. Int. Ed. Engl. 23, 77 (1984).
D. D. Awschalom, J. F. Smyth, G. Grinstein, et al., Phys. Rev. Lett. 68, 3092 (1992), A. Garg, Phys. Rev. Lett. 70, 1541 (1993).
D. M. Stemper-Kurn, M. R. Andrews, A. P. Chikkatur, et al., Phys. Rev. Lett. 80, 2027 (1998).
M. Barrett, J. Sauer, and M. S. Chapman, Phys. Rev. Lett. 87, 010404 (2001).
H. Pu, W. Zhang, and P. Meystre, Phys. Rev. Lett. 89, 090401 (2002).
D. L. Haycock, P. M. Alsing, I. H. Deutsch, et al., Phys. Rev. Lett. 85, 3365 (2000).
S. Ashab and C. Lobo, Phys. Rev. A 66, 013 609 (2002).
A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).
T.-L. Ho and S. K. Yip, Phys. Rev. Lett. 84, 4031 (2000).
S. Yi, O. E. Müstecaploğlu, C. P. Sun, et al., Phys. Rev. A 66, 011 601 (2002).
H. Pu, C. K. Law, and N. P. Bigelow, Physica 280, 27 (2000).
C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998).
G. J. Milburn, J. Corney, E. M. Wright, et al., Phys. Rev. A 55, 4318 (1997).