Nonlinear creep damage constitutive model for soft rocks

Springer Science and Business Media LLC - Tập 21 Số 1 - Trang 73-96 - 2017
Huai-Zhong Liu1, Hehan Xie1, Jian He1, Ming Xiao1, Zhuo Li2
1State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24 South Sect. 1, Yihuan Road, 610065, Chengdu, China
2College of Water Resources and Hydropower, Sichuan University, No. 24 South Sect. 1, Yihuan Road, 610065, Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abu Al-Rub, R.K., Darabi, M.K., Kim, S., Little, D.N., Glover, C.J.: Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete. Constr. Build. Mater. 41(0), 439–454 (2013). doi: 10.1016/j.conbuildmat.2012.12.044

Aydan, O., Ito, T., Oezbay, U., Kwasniewski, M., Shariar, K., Okuno, T., Ozgenoglu, A., Malan, D.F., Okada, T.: ISRM suggested methods for determining the creep characteristics of rock. Rock Mech. Rock Eng. 47(1SI), 275–290 (2014). doi: 10.1007/s00603-013-0520-6

Boukharov, G.N., Chanda, M.W., Boukharov, N.G.: The 3 processes of brittle crystalline rock creep. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(4), 325–335 (1995). doi: 10.1016/0148-9062(94)00048-8

Chan, K.S., Bodner, S.R., Fossum, A.F., Munson, D.E.: Damage mechanics treatment of creep failure in rock salt. Int. J. Damage Mech. 6(2), 121–151 (1997). doi: 10.1177/105678959700600201

Chen, B., Zhao, X., Feng, X., Zhao, H., Wang, S.: Time-dependent damage constitutive model for the marble in the Jinping II hydropower station in China. Bull. Eng. Geol. Environ. 73(2SI), 499–515 (2014). doi: 10.1007/s10064-013-0542-z

Chen, L., Wang, C.P., Liu, J.F., Liu, Y.M., Liu, J., Su, R., Wang, J.: A damage-mechanism-based creep model considering temperature effect in granite. Mech. Res. Commun. 56, 76–82 (2014). doi: 10.1016/j.mechrescom.2013.11.009

Chen, Y., Pan, C., Cao, P., Wang, W.: New mechanical model for soft rock rheology. Rock Soil Mech. 24(2), 209–214 (2003) (in Chinese)

Debernardi, D., Barla, G.: New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech. Rock Eng. 42(2), 259–288 (2009). doi: 10.1007/s00603-009-0174-6

El Bedoui, S., Guglielmi, Y., Lebourg, T., Perez, J.: Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapiere slope, the south-eastern French Alps. Geomorphology 105(3–4), 232–238 (2009). doi: 10.1016/j.geomorph.2008.09.025

Hou, Z.M.: Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. 40(5), 725–738 (2003). doi: 10.1016/S1365-1609(03)00064-9

Jaeger, J.C., Cook, N.G.W., Zimmerman, R.: Fundamentals of Rock Mechanics. Blackwell, Malden (2007)

Jin, L., Xia, C.: Study methods for creep damage in theoretical rheological models and some problems. Chin. J. Rock Mech. Eng. 31(SUPPL.1), 3006–3014 (2012) (in Chinese)

Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Nijhoff, Dordrecht (1986)

Lan, H., Martin, C.D., Andersson, J.C.: Evolution of in situ rock mass damage induced by mechanical-thermal loading. Rock Mech. Rock Eng. 46(1), 153–168 (2013). doi: 10.1007/s00603-012-0248-8

Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107(1), 83–89 (1985). doi: 10.1115/1.3225775

Ma, L., Liu, X., Fang, Q., Xu, H., Xia, H., Li, E., Yang, S., Li, W.: A new elasto-viscoplastic damage model combined with the generalized Hoek–Brown failure criterion for bedded rock salt and its application. Rock Mech. Rock Eng. 46(1), 53–66 (2013). doi: 10.1007/s00603-012-0256-8

Mazotti, C., Savoia, M.: Nonlinear creep damage model for concrete under uniaxial compression. J. Eng. Mech. 129(9), 1065–1075 (2003). doi: 10.1061/(ASCE)0733-9399(2003)129:9(1065)

Nishihara, M.: Stress–strain–time relations of rocks. Doshisha Eng. Rev. 8, 32–55 (1958), 85–115

Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

Ranalli, G.: Rheology of the Earth. Chapman & Hall, London (1995)

She, C.: Research on nonlinear viscoelasto-plastic creep model of rock. Chin. J. Rock Mech. Eng. 28(10), 2006–2011 (2009) (in Chinese)

Song, F., Zhao, F., Lu, Q.: Study on rheological properties and model for gypsum breccias. Chin. J. Rock Mech. Eng. 24(15), 2659–2664 (2005) (in Chinese)

Stead, D., Szczepanik, Z.: Time-dependent acoustic emission studies on potash. In: Roegies, D. (ed.) Rock Mechanics as a Multidisciplinary Science, pp. 471–479. Balkema, Rotterdam (1991)

Tan, T., Kang, W.: Locked in stresses, creep and dilatancy of rocks, and constitutive equations. Rock Mech. 13(1), 5–22 (1980). doi: 10.1007/BF01257895

Tomanovic, Z.: Rheological model of soft rock creep based on the tests on marl. Mech. Time-Depend. Mater. 10(2), 135–154 (2006). doi: 10.1007/s11043-006-9005-2

Ulusay, R., Aydan, O., Genis, M., Tano, H.: Stability assessment of Avanos underground congress centre (Cappadocia, Turkey) in soft tuffs through an integrated scheme of rock engineering methods. Rock Mech. Rock Eng. 46(6), 1303–1321 (2013). doi: 10.1007/s00603-012-0363-6

Verstrynge, E., Schueremans, L., Van Gemert, D.: Time-dependent mechanical behavior of lime-mortar masonry. Mater. Struct. 44(1), 29–42 (2011). doi: 10.1617/s11527-010-9606-8

Wang, J.A., Li, D.Z., Shang, X.C.: Creep failure of roof stratum above mined-out area. Rock Mech. Rock Eng. 45(4), 533–546 (2012a). doi: 10.1007/s00603-011-0216-8

Wang, W., Lv, J., Wang, H.: A creep-damage constitutive model for sandstone. Appl. Mech. Mater. 170–173, 289–294 (2012b). doi: 10.4028/www.scientific.net/AMM.170-173.289

Xia, C., Xu, C., Wang, X., Zhang, C.: Method for parameters determination with unified rheological mechanical model. Chin. J. Rock Mech. Eng. 28(2), 425–432 (2009) (in Chinese)

Yang, S., Cheng, L.: Non-stationary and nonlinear visco-elastic shear creep model for shale. Int. J. Rock Mech. Min. Sci. 48(6), 1011–1020 (2011). doi: 10.1016/j.ijrmms.2011.06.007

Yang, W., Zhang, Q., Li, S., Wang, S.: Time-dependent behavior of diabase and a nonlinear creep model. Rock Mech. Rock Eng. 47(4), 1211–1224 (2014). doi: 10.1007/s00603-013-0478-4

Zhao, Y., Cao, P., Wang, W., Wan, W., Liu, Y.: Viscoelasto-plastic rheological experiment under circular increment step load and unload and nonlinear creep model of soft rocks. J. Cent. South Univ. Technol. 16(3), 488–494 (2009). doi: 10.1007/s11771-009-0082-7

Zhou, H.W., Wang, C.P., Han, B.B., Duan, Z.Q.: A creep constitutive model for salt rock based on fractional derivatives. Int. J. Rock Mech. Min. Sci. 48(1), 116–121 (2011). doi: 10.1016/j.ijrmms.2010.11.004

Zhou, H.W., Wang, C.P., Mishnaevsky, L. Jr., Duan, Z.Q., Ding, J.Y.: A fractional derivative approach to full creep regions in salt rock. Mech. Time-Depend. Mater. 17(3), 413–425 (2013). doi: 10.1007/s11043-012-9193-x

Zhu, C., Ruan, H., Zhu, Z., Luo, R.: Non-linear rheological damage model of rock. Chin. J. Geotechn. Eng. 30(10), 1510–1513 (2008) (in Chinese)

Zienkiewicz, O.C., Cormeau, I.C.: Visco-plasticity—plasticity and creep in elastic solids—a unified numerical solution approach. Int. J. Numer. Methods Eng. 8(4), 821–845 (1974). doi: 10.1002/nme.1620080411