Nonlinear control of a boost converter using a robust regression based reinforcement learning algorithm
Tài liệu tham khảo
Balestrino, 2006, Circle-based criteria for performance evaluation of controlled DC–DC switching converters, IEEE Trans. Ind. Electron., 53, 10.1109/TIE.2006.885157
Bellman, 1957, Dynamic programming, Ann. Oper. Res.
Bertsekas, 1996
Cominos, 2002, PID controllers: recent tuning methods and design to specification, IEE Proc. Control Theory Appl., 149, 46, 10.1049/ip-cta:20020103
Fernandez-Gauna, 2014, Reinforcement learning of ball screw feed drive controllers, Eng. Appl. Artif. Intell., 30, 107, 10.1016/j.engappai.2014.01.015
Fox, 2002, 2, 1
Guo, L., Hung, J.Y., Nelms, R.M., 2003. Digital controller design for buck and boost converters using root locus techniques. In: Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society, Vol. 2, IECON ׳03, (IEEE Cat. No.03CH37468). 〈doi:10.1109/IECON.2003.1280344〉.
Huber, 1964, Robust Estimation of a Location Parameter, Ann. Math. Stat., 10.1214/aoms/1177703732
Hung, 1993, Variable structure control: a survey, IEEE Trans. Ind. Electron., 40, 2, 10.1109/41.184817
Kaelbling, 1996, Reinforcement learning: a survey, J. Artif. Intell. Res., 4, 237, 10.1613/jair.301
Lewis, 2011, Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 41, 14, 10.1109/TSMCB.2010.2043839
Mitchell, 1997
Ng, A.Y., Kim, H.J., Jordan, M.I., Sastry, S., 2004. Inverted autonomous helicopter flight via reinforcement learning. In: Proceedings of the International Symposium on Experimental Robotics.
Noel, 2014, Control of a nonlinear liquid level system using a new artificial neural network based reinforcement learning approach, Appl. Soft Comput., 23, 444, 10.1016/j.asoc.2014.06.037
Pazis, J., Lagoudakis, M.G., 2011. Reinforcement learning in multidimensional continuous action spaces, In: Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, IEEE SSCI 2011: Symposium Series on Computational Intelligence-ADPRL 2011, pp. 97–104. 〈doi:10.1109/ADPRL.2011.5967381〉.
Perry, A.G., Feng, G., Liu, Y.F., Sen, P.C., 2004. A new design method for PI-like fuzzy logic controllers for DC-to-DC converters. In: Proceedings of the IEEE Annual Power Electronics Specialists Conference, PESC Record, pp. 3751–3757. 〈doi:10.1109/PESC.2004.1355138〉.
Rashid, 2004
Shokri, 2011, Knowledge of opposite actions for reinforcement learning, Appl. Soft Comput. J., 11, 4097, 10.1016/j.asoc.2011.01.045
Sreekumar, 2008, A hybrid control algorithm for voltage regulation in DC–DC boost converter, IEEE Trans. Ind. Electron., 55, 2530, 10.1109/TIE.2008.918640
Street, 1988, A note on computing robust regression estimates via iteratively reweighted least squares, Am. Stat., 42, 152
Sundareswaran, 2009, Boost converter controller design using queen-bee-assisted GA, IEEE Trans. Ind. Electron., 778, 10.1109/TIE.2008.2006026
Sutton, 1998
Syafiie, 2011, Model-free control based on reinforcement learning for a wastewater treatment problem, Appl. Soft Comput., 10.1016/j.asoc.2009.10.018
Tesauro, 1994, TD-Gammon, a self-teaching backgammon program, achieves master-level play, Neural Comput., 10.1162/neco.1994.6.2.215
Tesauro, 1992, Practical issues in temporal difference learning, Mach. Learn., 8, 257, 10.1007/BF00992697
Watkins, 1992, Q-learning, Mach. Learn., 8, 279, 10.1007/BF00992698
Wiering, M.A., Hasselt, H. van, Pietersma, A.-D., Schomaker, L., 2011. Reinforcement learning algorithms for solving classification problems. In: Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 91–96. 〈doi:10.1109/ADPRL.2011.5967372〉.