Nonlinear buckling of axially compressed FG‐GRCL stiffened cylindrical panels with a piezoelectric layer by using Reddy's higher‐order shear deformation theory

Polymer Composites - Tập 43 Số 11 - Trang 7952-7966 - 2022
Vũ Hoài Nam1, Dang Thuy Dong1, Cao Van Doan1, Nguyen Thi Phuong1
1Faculty of Civil Engineering, University of Transport Technology, Hanoi, Vietnam

Tóm tắt

AbstractThis paper proposed a new analytical approach for the nonlinear buckling behavior of axially compressed functionally graded graphene reinforcement composite laminated (FG‐GRCL) stiffened cylindrical panels with the piezoelectric layers resting on the Pasternak's elastic foundation in the uniformly distributed temperature change. A design for the reinforcement of stiffened cylindrical panels is applied where the polymer matrixes of panels and stiffeners are reinforced by graphene sheets. The effects of FG‐GRCL stiffeners are modeled using the improved smeared stiffener technique, which is developed by applying the anisotropic higher‐order shear deformation beam theories for curved and straight stiffeners. The fundamental formulations are obtained by applying Reddy's higher‐order shear deformation theory (HSDT), and taking into account the von Kármán geometrical nonlinearities. The algebraically nonlinear equilibrium equations are achieved by employing Galerkin's procedure, and then they can be solved by using the ordinary calculation process. Some important remarks on the nonlinear buckling of stiffened FG‐GRCL cylindrical panels are archived from the numerical investigation process.

Từ khóa


Tài liệu tham khảo

10.1016/j.tws.2005.01.002

10.1016/j.compstruct.2005.11.001

10.1016/j.compositesb.2007.01.004

10.1016/j.ijmecsci.2006.09.011

10.1177/0731684419831650

10.1177/0954406219861658

10.1177/0892705720935957

10.1016/j.matdes.2010.01.048

10.1016/j.ast.2020.106078

10.1016/j.euromechsol.2012.01.005

10.1016/j.compstruct.2015.03.011

10.1002/pc.24409

10.1002/pc.24998

10.1016/j.tws.2019.106514

10.1016/j.engstruct.2021.113670

10.1016/j.ijmecsci.2017.07.017

10.1016/j.compstruct.2016.09.070

10.1016/j.compstruct.2021.114438

10.1016/j.compositesb.2017.03.020

10.1016/j.ijmecsci.2017.11.031

10.1016/j.tws.2017.12.005

10.1016/j.tws.2018.01.024

10.1016/j.cma.2017.12.015

10.1016/j.compositesb.2018.08.052

10.1007/s00707-020-02813-5

10.1002/pc.26038

10.1080/15397734.2021.1932522

10.1016/j.renene.2021.03.064

10.1016/j.ijmecsci.2021.106363

10.1088/1361-665X/ac4579

10.1016/j.compositesa.2021.106461

10.1016/j.ijepes.2021.107343

10.1016/j.compstruct.2016.07.059

10.1016/j.compstruct.2017.09.036

10.1016/j.actaastro.2017.12.004

10.1016/j.advengsoft.2006.12.004

10.1016/j.apm.2017.03.005

10.1016/j.scient.2011.07.009

10.1016/j.tws.2020.107090