Nonlinear analysis in p-vector spaces for single-valued 1-set contractive mappings

George Xianzhi Yuan1,2,3,4
1Business School, Chengdu University, Chengdu, China
2School of Mathematics, Sichuan University, Chengdu, China
3Business School, Sun Yat-sen University, Guangzhou, China
4College of Science, Chongqing University of Technology, Chongqing, China

Tóm tắt

The goal of this paper is to develop some fundamental and important nonlinear analysis for single-valued mappings under the framework of p-vector spaces, in particular, for locally p-convex spaces for $0 < p \leq 1$ . More precisely, based on the fixed point theorem of single-valued continuous condensing mappings in locally p-convex spaces as the starting point, we first establish best approximation results for (single-valued) continuous condensing mappings, which are then used to develop new results for three classes of nonlinear mappings consisting of 1) condensing; 2) 1-set contractive; and 3) semiclosed 1-set contractive mappings in locally p-convex spaces. Next they are used to establish the general principle for nonlinear alternative, Leray–Schauder alternative, fixed points for nonself mappings with different boundary conditions for nonlinear mappings from locally p-convex spaces, to nonexpansive mappings in uniformly convex Banach spaces, or locally convex spaces with the Opial condition. The results given by this paper not only include the corresponding ones in the existing literature as special cases, but are also expected to be useful tools for the development of new theory in nonlinear functional analysis and applications to the study of related nonlinear problems arising from practice under the general framework of p-vector spaces for $0< p \leq 1$ . Finally, the work presented by this paper focuses on the development of nonlinear analysis for single-valued (instead of set-valued) mappings for locally p-convex spaces. Essentially, it is indeed the continuation of the associated work given recently by Yuan (Fixed Point Theory Algorithms Sci. Eng. 2022:20, 2022); therein, the attention is given to the study of nonlinear analysis for set-valued mappings in locally p-convex spaces for $0 < p \leq 1$ .

Tài liệu tham khảo

Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics, vol. 141. Cambridge University Press, Cambridge (2001) Agarwal, R.P., O’Regan, D.: Birkhoff–Kellogg theorems on invariant directions for multimaps. Abstr. Appl. Anal. 7, 435–448 (2003) Agarwal, R.P., O’Regan, D.: Essential \(U_{c}^{k}\)-type maps and Birkhoff–Kellogg theorems. J. Appl. Math. Stoch. Anal. 2004(1), 1–8 (2004) Alghamdi, M.A., O’Regan, D., Shahzad, N.: Krasnosel’skii type fixed point theorems for mappings on nonconvex sets. Abstr. Appl. Anal. 2012, Article ID 267531 (2012) Askoura, Y., Godet-Thobie, C.: Fixed points in contractible spaces and convex subsets of topological vector spaces. J. Convex Anal. 13(2), 193–205 (2006) Balachandran, V.K.: Topological Algebras, vol. 185. Elsevier, Amsterdam (2000) Bayoumi, A.: Foundations of Complex Analysis in Non Locally Convex Spaces. Function Theory Without Convexity Condition. North-Holland Mathematics Studies, vol. 193. Elsevier, Amsterdam (2003) Bayoumi, A., Faried, N., Mostafa, R.: Regularity properties of p-distance transformations in image analysis. Int. J. Contemp. Math. Sci. 10, 143–157 (2015) Bernstein, S.: Sur les equations de calcul des variations. Ann. Sci. Éc. Norm. Supér. 29, 431–485 (1912) Bernuées, J., Pena, A.: On the shape of p-convex hulls \(0 < p < 1\). Acta Math. Hung. 74(4), 345–353 (1997) Birkhoff, G.D., Kellogg, O.D.: Invariant points in function space. Trans. Am. Math. Soc. 23(1), 96–115 (1922) Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965) Browder, F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 24(1), 82–90 (1967) Browder, F.E.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968) Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968) Browder, F.E.: Nonlinear Functional Analysis. Proc. Sympos. Pure Math., vol. 18. Am. Math. Soc., Providence (1976) Browder, F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. (N.S.) 9(1), 1–39 (1983) Carbone, A., Conti, G.: Multivalued maps and existence of best approximations. J. Approx. Theory 64, 203–208 (1991) Cauty, R.: Rétractès absolus de voisinage algébriques (French) [Algebraic absolute neighborhood retracts]. Serdica Math. J. 31(4), 309–354 (2005) Cauty, R.: Le théorėme de Lefschetz–Hopf pour les applications compactes des espaces ULC (French) [The Lefschetz–Hopf theorem for compact maps of uniformly locally contractible spaces]. J. Fixed Point Theory Appl. 1(1), 123–134 (2007) Chang, S.S.: Some problems and results in the study of nonlinear analysis. Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996). Nonlinear Anal. 30, 4197–4208 (1997) Chang, S.S., Cho, Y.J., Zhang, Y.: The topological versions of KKM theorem and Fan’s matching theorem with applications. Topol. Methods Nonlinear Anal. 1(2), 231–245 (1993) Chang, T.H., Huang, Y.Y., Jeng, J.C.: Fixed point theorems for multi-functions in S-KKM class. Nonlinear Anal. 44, 1007–1017 (2001) Chang, T.H., Huang, Y.Y., Jeng, J.C., Kuo, K.H.: On S-KKM property and related topics. J. Math. Anal. Appl. 229, 212–227 (1999) Chang, T.H., Yen, C.L.: KKM property and fixed point theorems. J. Math. Anal. Appl. 203, 224–235 (1996) Chen, Y.K., Singh, K.L.: Fixed points for nonexpansive multivalued mapping and the Opial’s condition. Jñānābha 22, 107–110 (1992) Chen, Y.Q.: Fixed points for convex continuous mappings in topological vector spaces. Proc. Am. Math. Soc. 129(7), 2157–2162 (2001) Darbo, G.: Punti uniti in trasformazioni a condominio non compatto. Rend. Semin. Mat. Univ. Padova 24, 84–92 (1955) Ding, G.G.: New Theory in Functional Analysis. Academic Press, Beijing (2007) Dobrowolski, T.: Revisiting Cauty’s proof of the Schauder conjecture. Abstr. Appl. Anal. 7, 407–433 (2003) Ennassik, M., Maniar, L., Taoudi, M.A.: Fixed point theorems in r-normed and locally r-convex spaces and applications. Fixed Point Theory 22(2), 625–644 (2021) Ennassik, M., Taoudi, M.A.: On the conjecture of Schauder. J. Fixed Point Theory Appl. 23(4), Paper No. 52 (2021), 15 pp. Fan, K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38, 121–126 (1952) Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969) Fan, K.: A minimax inequality and applications. In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; Dedicated to the Memory of Theodore S. Motzkin), pp. 103–113. Academic Press, New York (1972) Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1960/61) Furi, M., Pera, M.P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Pol. Math. 47(3), 331–346 (1987) Gal, S.G., Goldstein, J.A.: Semigroups of linear operators on p-Fréchet spaces \(0 < p <1\). Acta Math. Hung. 114(1–2), 13–36 (2007) Gholizadeh, L., Karapinar, E., Roohi, M.: Some fixed point theorems in locally p-convex spaces. Fixed Point Theory Appl. 2013, 312 (2013), 10 pp. Goebel, K.: On a fixed point theorem for multivalued nonexpansive mappings. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 29, 69–72 (1975) Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990) Goebel, K., Kirk, W.A.: Some problems in metric fixed point theory. J. Fixed Point Theory Appl. 4(1), 13–25 (2008) Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251–258 (1965) Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications, vol. 495. Kluwer Academic, Dordrecht (1999) Górniewicz, L., Granas, A., Kryszewski, W.: On the homotopy method in the fixed point index theory of multivalued mappings of compact absolute neighborhood retracts. J. Math. Anal. Appl. 161(2), 457–473 (1991) Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003) Halpern, B.R., Bergman, G.H.: A fixed-point theorem for inward and outward maps. Trans. Am. Math. Soc. 130, 353–358 (1965) Huang, N.J., Lee, B.S., Kang, M.K.: Fixed point theorems for compatible mappings with applications to the solutions of functional equations arising in dynamic programmings. Int. J. Math. Math. Sci. 20(4), 673–680 (1997) Husain, T., Latif, A.: Fixed points of multivalued nonexpansive maps. Math. Jpn. 33, 385–391 (1988) Husain, T., Tarafdar, E.: Fixed point theorems for multivalued mappings of nonexpansive type. Yokohama Math. J. 28(1–2), 1–6 (1980) Isac, G.: Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities. Nonconvex Optimization and Its Applications, vol. 87. Springer, New York (2006) Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) Kalton, N.J.: Compact p-convex sets. Q. J. Math. Oxf. Ser. 28(2), 301–308 (1977) Kalton, N.J.: Universal spaces and universal bases in metric linear spaces. Stud. Math. 61, 161–191 (1977) Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-Space Sampler. London Mathematical Society Lecture Note Series, vol. 89. Cambridge University Press, Cambridge (1984) Kaniok, L.: On measures of noncompactness in general topological vector spaces. Comment. Math. Univ. Carol. 31(3), 479–487 (1990) Kim, I.S., Kim, K., Park, S.: Leray–Schauder alternatives for approximable maps in topological vector spaces. Math. Comput. Model. 35, 385–391 (2002) Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014) Klee, V.: Convexity of Chevyshev sets. Math. Ann. 142, 292–304 (1960/61) Knaster, H., Kuratowski, C., Mazurkiwiecz, S.: Ein beweis des fixpunktsatzes für n-dimensional simplexe. Fundam. Math. 63, 132–137 (1929) Ko, H.M., Tsai, Y.H.: Fixed point theorems for point-to-set mappings in locally convex spaces and a characterization of complete metric spaces. Bull. Acad. Sin. 7(4), 461–470 (1979) Kozlov, V., Thim, J., Turesson, B.: A fixed point theorem in locally convex spaces. Collect. Math. 61(2), 223–239 (2010) Kuratowski, K.: Sur les espaces complets. Fundam. Math. 15, 301–309 (1930) Lami Dozo, E.: Multivalued nonexpansive mappings and Opial’s condition. Proc. Am. Math. Soc. 38, 286–292 (1973) Leray, J., Schauder, J.: Topologie et equations fonctionnelles. Ann. Sci. Éc. Norm. Supér. 51, 45–78 (1934) Li, G.Z.: The fixed point index and the fixed point theorems of 1-set-contraction mappings. Proc. Am. Math. Soc. 104, 1163–1170 (1988) Li, G.Z., Xu, S.Y., Duan, H.G.: Fixed point theorems of 1-set-contractive operators in Banach spaces. Appl. Math. Lett. 19(5), 403–412 (2006) Li, J.L.: An extension of Tychonoff’s fixed point theorem to pseudonorm adjoint topological vector spaces. Optimization 70(5–6), 1217–1229 (2021) Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Am. Math. Soc. 80, 1123–1126 (1974) Liu, L.S.: Approximation theorems and fixed point theorems for various classes of 1-set-contractive mappings in Banach spaces. Acta Math. Sin. Engl. Ser. 17(1), 103–112 (2001) López-Acedo, G., Xu, H.K.: Remarks on multivalued nonexpansive mappings. Soochow J. Math. 21(1), 107–115 (1995) Machrafi, N., Oubbi, L.: Real-valued non compactness measures in topological vector spaces and applications [Corrected title: Real-valued non compactness measures in topological vector spaces and applications]. Banach J. Math. Anal. 14(4), 1305–1325 (2020) Mańka, R.: The topological fixed point property—an elementary continuum-theoretic approach. In: Fixed Point Theory and Its Applications. Banach Center Publ., vol. 77, pp. 183–200. Polish Acad. Sci. Inst. Math., Warsaw (2007) Mauldin, R.D.: The Scottish Book, Mathematics from the Scottish Café with Selected Problems from the New Scottish Book, 2nd edn. Birkhäuser, Basel (2015) Muglia, L., Marino, G.: Some results on the approximation of solutions of variational inequalities for multivalued maps on Banach spaces. Mediterr. J. Math. 18(4), Paper No. 157 (2021), 19 pp. Nhu, N.T.: The fixed point property for weakly admissible compact convex sets: searching for a solution to Schauder’s conjecture. Topol. Appl. 68(1), 1–12 (1996) Nussbaum, R.D.: The fixed point index and asymptotic fixed point theorems for k-set-contractions. Bull. Am. Math. Soc. 75, 490–495 (1969) Okon, T.: The Kakutani fixed point theorem for Robert spaces. Topol. Appl. 123(3), 461–470 (2002) Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 595–597 (1967) O’Regan, D.: Abstract Leray–Schauder type alternatives and extensions. An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat. 27(1), 233–243 (2019) O’Regan, D.: Continuation theorems for Monch countable compactness-type set-valued maps. Appl. Anal. 100(7), 1432–1439 (2021) O’Regan, D., Precup, R.: Theorems of Leray–Schauder Type and Applications. Gordon & Breach, New York (2001) Oubbi, L.: Algebras of Gelfand-continuous functions into Arens–Michael algebras. Commun. Korean Math. Soc. 34(2), 585–602 (2019) Park, S.: Some coincidence theorems on acyclic multifunctions and applications to KKM theory. In: Fixed Point Theory and Applications (Halifax, NS, 1991), pp. 248–277. World Scientific, River Edge (1992) Park, S.: Generalized Leray–Schauder principles for compact admissible multifunctions. Topol. Methods Nonlinear Anal. 5(2), 271–277 (1995) Park, S.: Acyclic maps, minimax inequalities and fixed points. Nonlinear Anal. 24(11), 1549–1554 (1995) Park, S.: Generalized Leray–Schauder principles for condensing admissible multifunctions. Ann. Mat. Pura Appl. 172(4), 65–85 (1997) Park, S.: The KKM principle in abstract convex spaces: equivalent formulations and applications. Nonlinear Anal. 73(4), 1028–1042 (2010) Park, S.: On the KKM theory of locally p-convex spaces. In: Nonlinear Analysis and Convex Analysis, vol. 2011, pp. 70–77. Institute of Mathematical Research (Kyoto University), Kyoto (2016). http://hdl.handle.net/2433/231597 Park, S.: One hundred years of the Brouwer fixed point theorem. J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 60(1), 1–77 (2021) Park, S.: Some new equivalents of the Brouwer fixed point theorem. Adv. Theory Nonlinear Anal. Appl. 6(3), 300–309 (2022). https://doi.org/10.31197/atnaa.1086232 Petrusel, A., Rus, I.A., Serban, M.A.: Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator. J. Nonlinear Convex Anal. 15(3), 493–513 (2014) Petryshyn, W.V.: Construction of fixed points of demicompact mappings in Hilbert space. J. Math. Anal. Appl. 14, 276–284 (1966) Petryshyn, W.V.: Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces. Trans. Am. Math. Soc. 182, 323–352 (1973) Pietramala, P.: Convergence of approximating fixed points sets for multivalued nonexpansive mappings. Comment. Math. Univ. Carol. 32(4), 697–701 (1991) Poincare, H.: Sur un theoreme de geometric. Rend. Circ. Mat. Palermo 33, 357–407 (1912) Potter, A.J.B.: An elementary version of the Leray–Schauder theorem. J. Lond. Math. Soc. 5(2), 414–416 (1972) Qiu, J., Rolewicz, S.: Ekeland’s variational principle in locally p-convex spaces and related results. Stud. Math. 186(3), 219–235 (2008) Reich, S.: Fixed points in locally convex spaces. Math. Z. 125, 17–31 (1972) Roberts, J.W.: A compact convex set with no extreme points. Stud. Math. 60(3), 255–266 (1977) Robertson, L.B.: Topological vector spaces. Publ. Inst. Math. 12(26), 19–21 (1971) Rolewicz, S.: Metric Linear Spaces. PWN—Polish Scientific Publishers, Warsaw (1985) Rothe, E.H.: Some homotopy theorems concerning Leray–Schauder maps. In: Dynamical Systems, II (Gainesville, Fla., 1981), pp. 327–348. Academic Press, New York (1982) Rothe, E.H.: Introduction to Various Aspects of Degree Theory in Banach Spaces. Mathematical Surveys and Monographs, vol. 23. Am. Math. Soc., Providence (1986) Sadovskii, B.N.: On a fixed point principle [in Russian]. Funkc. Anal. Prilozh. 1(2), 74–76 (1967) Schauder, J.: Der Fixpunktsatz in Funktionalraumen. Stud. Math. 2, 171–180 (1930) Sezer, S., Eken, Z., Tinaztepe, G., Adilov, G.: p-Convex functions and some of their properties. Numer. Funct. Anal. Optim. 42(4), 443–459 (2021) Shahzad, N.: Fixed point and approximation results for multimaps in S-KKM class. Nonlinear Anal. 56(6), 905–918 (2004) Shahzad, N.: Approximation and Leray–Schauder type results for \(U_{c}^{k}\) maps. Topol. Methods Nonlinear Anal. 24(2), 337–346 (2004) Shahzad, N.: Approximation and Leray–Schauder type results for multimaps in the S-KKM class. Bull. Belg. Math. Soc. 13(1), 113–121 (2006) Silva, E.B., Fernandez, D.L., Nikolova, L.: Generalized quasi-Banach sequence spaces and measures of noncompactness. An. Acad. Bras. Ciênc. 85(2), 443–456 (2013) Simons, S.: Boundedness in linear topological spaces. Trans. Am. Math. Soc. 113, 169–180 (1964) Singh, S.P., Watson, B., Srivastava, F.: Fixed Point Theory and Best Approximation: The KKM-Map Principle. Mathematics and Its Applications, vol. 424. Kluwer Academic, Dordrecht (1997) Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980) Tabor, J.A., Tabor, J.O., Idak, M.: Stability of isometries in p-Banach spaces. Funct. Approx. 38, 109–119 (2008) Tan, D.N.: On extension of isometries on the unit spheres of \(L^{p}\)-spaces for \(0 < p \leq 1\). Nonlinear Anal. 74, 6981–6987 (2011) Tan, K.K., Yuan, X.Z.: Random fixed-point theorems and approximation in cones. J. Math. Anal. Appl. 185, 378–390 (1994) Tychonoff, A.: Ein Fixpunktsatz. Math. Ann. 111, 767–776 (1935) Wang, J.Y.: An Introduction to Locally p-Convex Spaces pp. 26–64. Academic Press, Beijing (2013) Weber, H.: Compact convex sets in non-locally convex linear spaces, Schauder-Tychonoff fixed point theorem. In: Topology, Measures, and Fractals (Warnemunde, 1991). Math. Res., vol. 66, pp. 37–40. Akademie-Verlag, Berlin (1992) Weber, H.: Compact convex sets in non-locally convex linear spaces. Dedicated to the memory of Professor Gottfried Köthe. Note Mat. 12, 271–289 (1992) Xiao, J.Z., Lu, Y.: Some fixed point theorems for s-convex subsets in p-normed spaces based on measures of noncompactness. J. Fixed Point Theory Appl. 20(2), Paper No. 83 (2018), 22 pp. Xiao, J.Z., Zhu, X.H.: The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity. Math. Comput. Model. 54(5–6), 1576–1583 (2011) Xiao, J.Z., Zhu, X.H.: Some fixed point theorems for s-convex subsets in p-normed spaces. Nonlinear Anal. 74(5), 1738–1748 (2011) Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127–1138 (1991) Xu, H.K.: On weakly nonexpansive and ∗-nonexpansive multivalued mappings. Math. Jpn. 36(3), 441–445 (1991) Xu, H.K.: Metric fixed point theory for multivalued mappings. Diss. Math. (Rozprawy Mat.) 389, 1–39 (2000) Xu, H.K., Muglia, L.: On solving variational inequalities defined on fixed point sets of multivalued mappings in Banach spaces. J. Fixed Point Theory Appl. 22(4), Paper No. 79 (2020), 17 pp. Xu, S.Y.: New fixed point theorems for 1-set-contractive operators in Banach spaces. Nonlinear Anal. 67(3), 938–944 (2007) Xu, S.Y., Jia, B.G., Li, G.Z.: Fixed points for weakly inward mappings in Banach spaces. J. Math. Anal. Appl. 319(2), 863–873 (2006) Yanagi, K.: On some fixed point theorems for multivalued mappings. Pac. J. Math. 87(1), 233–240 (1980) Yuan, G.X.: The study of minimax inequalities and applications to economies and variational inequalities. Mem. Am. Math. Soc. 132, no. 625 (1998) Yuan, G.X.: KKM Theory and Applications in Nonlinear Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 218. Dekker, New York (1999) Yuan, G.X.: Nonlinear analysis by applying best approximation method in p-vector spaces. Fixed Point Theory Algorithms Sci. Eng. 2022, 20 (2022). https://doi.org/10.1186/s13663-022-00730-x Yuan, G.X.: Topological results, Rothe’s principle and Leray–Schauder alternative for the fixed point equation in p-vector spaces. J. Anal. 2022 (2022). https://doi.org/10.1007/s41478-022-00522-x Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Vol. I, Fixed-Point Theorems. Springer, New York (1986)