Nonlinear Schrödinger Equations and the Separation Property

Journal of Nonlinear Mathematical Physics - Tập 2 - Trang 120-132 - 1995
Gerald A. Goldin1, George Svetlichny2
1Departments of Mathematics and Physics, Rutgers University, New Brunswick, USA
2Department of Mathematics, Pontifícia Universidade Católica, Rio de Janeiro, Brazil

Tóm tắt

We investigate hierarchies of nonlinear Schrödinger equations for multiparticle systems satisfying the separation property, i.e., where product wave functions evolve by the separate evolution of each factor. Such a hierarchy defines a nonlinear derivation on tensor products of the single-particle wave-function space, and satisfies a certain homogeneity property characterized by two new universal physical constants. A canonical construction of hierarchies is derived that allows the introduction, at any particular “threshold” number of particles, of truly new physical effects absent in systems having fewer particles. In particular, if single quantum particles satisfy the usual (linear) Schrödinger equation, a system of two particles can evolve by means of a fairly simple nonlinear Schrödinger equation without violating the separation property. Examples of Galileian-invariant hierarchies are given.

Tài liệu tham khảo

Bialynicki-Birula I. and Mycielski, J., Annals of Physics, 1976, V.100, 62. Collins R.E., Foundations of Physics Letters, 1992, V.5, 63. Doebner H.-D. and Goldin G.A., Phys. Lett. A, 1992, V.162, 397; G. A. Goldin, Int. J. Mod. Phys. B., 1992, V.6, 1905; Doebner H.-D. and Goldin G.A., Group-theoretical foundations of nonlinear quantum mechanics, Procs. of the XIXth Int’l. Conf. on Group Theoretical Methods in Physics, Salamanca, June 29 – July 4, 1992, Ed. by J. M. Guilarte, M. A. del Olmo and M. Santander, Annales de Fisica, Monografias, Vol. II (CIEMAT/RSEF, Madrid, 1993), 442–445. Kostin M.D., J. Chem. Phys., 1972, V.57, 3589. Malomed B.A. and Stenflo L., J. Phys. A: Math. Gen., 1991, V.24, L1149. Polychronakos A.P. and Tzani R., Schrödinger equation for particle with friction, Columbia University preprint CU-TP-569 (1992); University of Barcelona preprint UB-ECM-PF-92/16 (June 1992). Spiller T.P., Spencer P.S., Clark T.D., Ralph J.F., Prace H., Prance R.J. and Clippingdale A., Foundations of Physics Letters, 1991, V.4, 507. Weinberg, S., Phys. Rev. Lett., 1989, V.62, 485; Weinberg S., Annals of Physics, 1989, V.194, 336. Gisin N., Phys. Rev. Lett., 1984, V.53, 1776; Gisin N., Helv. Physica Acta, 1989, V.62, 363; Gisin N., Phys. Lett. A, 1990, V.143, 1. Svetlichny G., Quantum formalism and superluminal communication, Int. J. Theor. Phys. (in press). Polchinski J., Phys. Rev. Lett., 1991, V.66, 397. Hepp, K., Helvetica Physica Acta, 1972, V.45, 237. Jordan T.F., Am. J. Phys., 1991, V.59, 606. Faddeev L.D. and Takhtajan L.A., Hamiltonian Methods in the Theory of Solitons, Springer Verlag, Berlin, 1987. Sharpe D.W., Quarterly J. Math., 1964, V.15, 155. Fushchych W.I. and Cherniha R.M., Ukr. Math. J., 1989, V.41, N 10, 1161; Ibid., N 12, 1456. Fushchych W.I. and Cherniha, R.M., On exact solutions of two Schrödinger-type nonlinear equations, Preprint Inst. Mathem. Ukrainian Acad. Sci., 1986, N 86.85, 35 p. Fushchych W.I., Shtelen W.M. and Serov N.I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer Academic Publ., Dordrecht, 1993.