Nonlinear Nanowire Close to a Truncated Metallic Film: a Step Toward Nanosized Light Sources
Tóm tắt
A controllable nanosized light source based on nonlinear interaction of light and a semiconductor nanowire is proposed. Surface plasmon polariton (SPP) waves with different frequencies propagate along the upper and lower surfaces of a truncated metallic film and are scattered at its end face. A nanowire, in that vicinity, is pumped by the scattered light, and new harmonics are generated via second-order nonlinear optical effects. Green's function surface integral equation method is exploited to numerically calculate the electric field, the magnetic field, and the power of the generated frequency components. Results show that the power of the generated harmonics depends on the position and radius of the nanowire, thickness of the metallic film, as well as the wavelength of the incident SPP waves. On the other hand, by controlling the phase difference between incident SPP waves having the same frequencies, it is possible to manipulate the electric field pattern and also to change the power of the generated harmonics.
Tài liệu tham khảo
Pauzauskie PJ, Yang P (2006) Mater Today 9:36
Yan R, Gargas D, Yang P (2009) Nat Photon 3:569
Law M, Goldberger J, Yang P (2004) Annu Rev Mater Res 34:83
Yang P, Yan R, Fardy M (2010) Nano Lett 10:1529
Suyatin DB, Sun J, Fuhrer A, Wallin D, Fröberg LE, Karlsson LS, Maximov I, Wallenberg LR, Samuelson L, Xu HQ (2008) Nano Lett 8:1100
Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P (2002) Chem Eur J 8:1260
Grange R, Choi JW, Hsieh CL, Pu Y, Magrez A, Smajda R, Forro L, Psaltis D (2009) Appl Phys Lett 95:143105
Johnson JC, Yan H, Schaller RD, Haber LH, Saykally RJ, Yang P (2001) J Phys Chem 105:11387
Goldberger J, Sirbuly DJ, Law M, Yang P (2005) J Phys Chem B 109:9
Garnett EC, Yang P (2008) J Am Chem Soc 130:9224
Zhang CF, Dong ZW, You GJ, Zhu RY, Qian SX, Deng H, Cheng H, Wang JC (2006) Appl Phys Lett 89:042117
Long JP, Simpkins BS, Rowenhorst DJ, Pehrsson PE (2007) Nano Lett 7:831
Voss T, Kudyk I, Wischmeier L, Gutowski J (2009) Phys Status Solidi B 246:311
Prasanth R, Van Vugt LK, Vanmaekelbergh DAM, Gerritsen HC (2006) Appl Phys Lett 88:181501
Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P (2007) Nat Lett 447:1098
Johnson JC, Yan H, Schaller RD, Petersen PB, Yang P, Saykally J (2002) Nano Lett 2:279
Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer, Berlin
Søndergaard T (2007) Phys Stat Sol (b) 244:3448
Kern AM, Martin OJF (2009) J Opt Soc Am A 26:732
Pedersen K, Fisker C, Pedersen TG (2008) Phys Stat Sol (c) 5:2671
Chan SW, Barille R, Nunzi JM, Tam KH, Leung YH, Chan WK, Djurisic AB (2006) Appl Phys B 84:351
Park JS, Yamazaki Y, Takahashi Y, Hong SK, Chang JH, Fujiwara T, Yao T (2009) Appl Phys Lett 94:231118
Zhang XQ, Tang ZK, Kawasaki M, Ohtomo A, Koinuma H (2004) Thin Solid Films 450:320
Das SK, Bock M, O’Neill C, Grunwald R, Lee KM, Lee HW, Lee S, Rotermund F (2008) Appl Phys Lett 93:181112
Boyd RW (2003) Nonlinear optics. Academic, New York
Jung J, Søndergaard T (2008) Phys Rev B 77:245310
Zavareian N, Massudi R (2012) Plasmonics 7:447
Palik ED (1997) The handbook of optical constants of solids. Academic, New York
Morkoc H, Ozgur U (2009) Zinc oxide: fundamentals, materials, and device technology. Wiley-VCH, Weinheim