Nonlinear Dirac equations on Riemann surfaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amman, B.: A variational problem in conformal spin geometry. Habilitationsschrift, Universität Hamburg, May 2003, http://www.berndammann.de/publications
Ammann B. and Humbert E. (2006). The first conformal Dirac eigenvalue on 2-dimensional tori. J. Geom. Phys. 56(4): 623–642
Bartnik R. and Chruściel P.T. (2005). Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579: 13–73
Chen Q., Jost J., Li J.Y. and Wang B. (2005). Regularity theorem and energy identities for Dirac-harmonic maps. Math. Z. 251: 61–84
Ding W.Y. and Tian G. (1996). Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3: 543–554
Friedrich T. (1998). On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phy. 28: 143–157
Gilberg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag (1998)
Jost, J.: Two-Dimensional Geometric Variational Problems. Wiley (1991)
Kenmotsu K. (1979). Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245: 89–99
Mcduff D. and Salamon D. (1994). J-Holomorphic Curves and Quantum Cohomology. AMS Providence, Rhode Island
Parker T.H. (1996). Bubble tree convergence for harmonic maps. J. Diff. Geom. 44(3): 595–633
Parker T.H. and Wolfson J.G. (1993). Pseudo-holomorphic maps and Bubble trees. J. Geom. Anal. 3: 63–98
Sacks J. and Uhlenbeck K. (1981). The existence of minimal immersions of 2-spheres. Ann. Math. 113(1): 1–24
Taimanov, I.S.: Two dimensional Dirac operator and surface theory. Russian Math. Surveys 61(1), 79–159 (2006) Math. Rev. MR2239773