Nonlinear Dirac equations on Riemann surfaces

Qun Chen1, Juergen Jost2, Guofang Wang3
1School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
2Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, 04103, Germany
3Faculty of Mathematics, University Magdeburg, Magdebrug, 39016, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amman, B.: A variational problem in conformal spin geometry. Habilitationsschrift, Universität Hamburg, May 2003, http://www.berndammann.de/publications

Ammann B. and Humbert E. (2006). The first conformal Dirac eigenvalue on 2-dimensional tori. J. Geom. Phys. 56(4): 623–642

Bartnik R. and Chruściel P.T. (2005). Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579: 13–73

Chen Q., Jost J., Li J.Y. and Wang G.F. (2006). Dirac-harmonic maps. Math. Z. 254: 409–432

Chen Q., Jost J., Li J.Y. and Wang B. (2005). Regularity theorem and energy identities for Dirac-harmonic maps. Math. Z. 251: 61–84

Chen, Q., Jost, J., Wang, G.F.: Liouville theorems for Dirac-harmonic maps. Preprint 2006

Ding W.Y. and Tian G. (1996). Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3: 543–554

Friedrich T. (1998). On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phy. 28: 143–157

Gilberg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag (1998)

Jost, J.: Two-Dimensional Geometric Variational Problems. Wiley (1991)

Kenmotsu K. (1979). Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245: 89–99

Mcduff D. and Salamon D. (1994). J-Holomorphic Curves and Quantum Cohomology. AMS Providence, Rhode Island

Parker T.H. (1996). Bubble tree convergence for harmonic maps. J. Diff. Geom. 44(3): 595–633

Parker T.H. and Wolfson J.G. (1993). Pseudo-holomorphic maps and Bubble trees. J. Geom. Anal. 3: 63–98

Sacks J. and Uhlenbeck K. (1981). The existence of minimal immersions of 2-spheres. Ann. Math. 113(1): 1–24

Taimanov, I.S.: Two dimensional Dirac operator and surface theory. Russian Math. Surveys 61(1), 79–159 (2006) Math. Rev. MR2239773

Ye R. (1994). Gromov’s compactness theorem for pseudo-holomorphic curves. Trans. Am. Math. Soc. 342: 671–694