Nonlinear Coherence in Multivariate Research: Invariants and the Reconstruction of Attractors

Frederick David Abraham1
1Blueberry Brain Institute

Tóm tắt

First, some linear techniques in multivariate time-series analysis in EEG research are reviewed to highlight the problem of estimating the dimensionality of the state space (embedding dimension), the reconstruction of an attractor, and the evaluation of invariant properties of the attractor. The traditional linear techniques included the usual spectral and cospectral measures of power, phase, and coherence to which stepwise discriminant analysis was applied for canonical representation of the attractor. Then, some traditional nonlinear techniques of attractor reconstruction and dimensional analysis which use the time-lagged univariate approach of Ruelle and Takens (Takens, 1981) are reviewed. Next, updates and multivariate generalizations that use singular-value decomposition (Broomhead & King, 1986) are reviewed. Finally, Stewart's (1995, 1996) multivariate generalization of the method of false nearest neighbors (Abarbanel, Brown, Sidorowich, & Tsimring, 1993; Kennel, Brown, & Abarbanel, 1992) is reviewed. These are particularly relevant for evaluating multivariate coherence in research on the complex cooperative dynamical systems found in neuroscience, psychology, and social science when time series of sufficient length are investigated.

Tài liệu tham khảo

Abarbanel, H., Brown, R., Sidorowich, J., & Tsimring, L. Sh. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65, 1331–1392. Abraham, F. D. (1993). Chaos in brain function. World Futures, 37, 41–58. Abraham, F. D., Abraham, R. H., & Shaw, C. D. (1990). A visual introduction to dynamical systems theory for psychology. Santa Cruz: Aerial Press. Abraham, F. D., Bryant, H., Mettler, M., Bergerson, B., Moore, F., Maderdrut, J., Gardiner, M., Walter, D., & Jennrich, R. (1973). Spectrum and discriminant analyses reveal remote rather than local sources for hypothalamic EEG: Could waves affect unit activity? Brain Research, 49, 349–366. Aguirre, L. A., & Billings, S. A. (1995). Physica D, 85, 239–258. Babloyantz, A. (1989). Estimation of correlation dimension from single and multichannel recording—A critical view. In E. Basar & T. H. Bullock (Eds.), Brain dynamics (pp. 122–130). Berlin: Springer-Verlag. Boker, S. M., & Bertenthal, B. I. (1995). Dynamical Modeling with False Nearest Neighbors. Paper delivered at the Nonlinear Techniques in Physiological Time Series Analysis, an International Workshop with internet participation, October 23–27, Dresden, Germany. World Wide Web: URL: http://www.mpipks-dresden.mpg.de/∽ntptsa/, Mirror: http://www.ccsr.uiuc.edu/∽gmk/Projects/NTPTSA/ Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236. Browne, M. W., & Cudeck, R. (1993), Alternative ways of assessing model fit. In K. A. Bollen & J. Scott Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park: Sage. Freeman, W. J. (1989). Analysis of strange attractors in EEGs with kinesthetic experience and 4-D computer graphics. In E. Basar & T. H. Bullock (Eds.), Brain dynamics (pp. 512–520). Berlin: Springer-Verlag. Friedrich, R. (1995). A Method for Analyzing Spatio-temporal Patterns and Its Application to Brain Electric Signals. Paper delivered at the Nonlinear Techniques in Physiological Time Series Analysis, an International Workshop with internet participation, October 23–27, Dresden, Germany. World Wide Web: URL: http://www.mpipks-dresden.mpg.de/∽ntptsa/, Mirror: http://www.ccsr.uiuc.edu/∽gmk/Projects/NTPTSA/ Gentry, T. (1995). Fractal geometry and human understanding. In F. D. Abraham & A. R. Gilgen (Eds.), Chaos theory in psychology (pp. 145–155). Westport: Greenwood/Praeger. Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189. Guastello, S. J. (1995). Chaos, catastrophe, and human affairs: Applications of nonlinear dynamics to work, organizations, and social evolution. Mahwah: Erlbaum. Jibu, M., Pribram, K. H., & Yasue, K. (June 15 & 30, 1996). From conscious experience to memory storage and retrieval: The role of quantum brain dynamics and boson condensation of evanescent photons. International Journal of Modern Physics B, 10, 13–14. Kaplan, D. T., & Glass, L. (1992). Direct test for determinism in a time series. Physical Review Letters, 68, 427–430. Kennel, M., Brown, R., & Abarbanel, H. (1992). Determining embedding dimension for phasespace reconstruction using a geometical construction. Physical Review E, 45, 3403–3411. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141. Lorenz, E. N. (1984). Formulation of a low-order model of a moist general circulation. Journal of the Atmospheric Sciences, 41, 1933–1945. Mandelbrot, B. B. (1977/1982). The fractal geometry of nature. New York: Freeman. Mañé, R. (1981). On the dimension of the compact invariant sets of certain nonlinear maps. In D. A. Rand & L.-S. Young (Eds.), Dynamical systems and turbulence, Warwick, 1980. Lecture Notes in Mathematics, 898 (p. 230). Berlin: Springer-Verlag. Massey, F., Jennrich, R. I., Clark, E., & Brown, M. B. (1969). BMDX92 time series spectrum estimation. In W. J. Dixon (Ed.), BMD Biomedical Computer Programs, X-series supplement, University of California Publication on Automatic Computation No. 3. Los Angeles: University of California Press. Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. New York: Wiley. Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physics Review Letters, 45, 712–715. Palus, M. (1995). Coarse-Grained Entropy Rates for Characterization of Complex Time Series. Paper delivered at the Nonlinear Techniques in Physiological Time Series Analysis, an International Workshop with internet participation, October 23–27, Dresden, Germany. World Wide Web: URL: http://www.mpipks-dresden.mpg.de/∽ntptsa/, Mirror: http://www.ccsr.uiuc.edu/∽gmk/Projects/NTPTSA/ Pompe, B. (1995). Measuring Nonlinear Dependencies in Time Series. Paper delivered at the Nonlinear Techniques in Physiological Time Series Analysis, an International Workshop with internet participation, October 23–27, Dresden, Germany. World Wide Web: URL: http://www.mpipks-dresden.mpg.de/∽ntptsa/, Mirror: http://www.ccsr.uiuc.edu/∽gmk/Projects/NTPTSA/ Preissel, H., & Artesen, A. (1993). Reconstruction and characterization of neuronal dynamics: How attractive is chaos? In A. Artesen & V. Baraitgenberg (Eds.), Information processing in the cortex: Experiments and theory (pp. 285–297). Berlin: Springer-Verlag. Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters, 57A, 397–398. Runyon, D. (January 16, 1937). Lonely heart. Colliers, pp. 7–9. Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65, 579. Schaffer, W. M., Truty, G. L., & Fulmer, S. L. (1988). Dynamical software. Tuscon: Dynamical Systems [Dewey: Academic Distributing ([email protected])]. Sprott, J. C., & Rowlands, G. (1992). Chaos data analyzer. New York: American Institute of Physics (TASL, Box 8202, North Carolina State University, Raleigh NC 27695–8202). Stewart, H. B. (1996). Chaos, dynamical structure and climate variability. In D. Herbert (Ed.), Chaos and the changing nature of science and medicine, an introduction, Conference proceedings, 376 (pp. 80–115). Woodbury, NY: American Institute of Physics. Stewart, H. B. (in press). Dynamical structure of climate systems. Upton: Brookhaven National Laboratory; http://msg.das.bnl.gov/∽bstewart/ Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand & L.-S. Young (Eds.), Dynamical systems and turbulence, Warwick, 1980. Lecture Notes in Mathematics, 898 (pp. 366–381). Berlin: Springer-Verlag. Voss, R. F. (1988). Fractals in nature: From characterization to simulation. In H-O. Peitgen & D. Saupe (Eds.), The science of fractal images (pp. 21–70). New York: Springer-Verlag. Walter, D. O., Rhodes, J. M., & Adey, W. R. (1967). Discriminating among states of consciousness by EEG measurements. A study of four subjects. Electroencephalographic and Clinical Neurophysiology, 22, 22–29. Whitney, H. (1936). Differential manifolds. Annals of Mathematics, 37, 645.