Phá hủy bằng tia xạ không xâm lấn cho các rối loạn nhịp thất

Alexander J. Sharp1, Raymond Mak2, Paul C. Zei3
1Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
2Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, USA
3Cardiac Arrhythmia Service, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA

Tóm tắt

Trong bài tổng quan này, chúng tôi mô tả các nguyên tắc chung và ứng dụng lâm sàng của sự phá hủy bằng tia xạ định vị (SR) và ứng dụng cụ thể của nó trong điều trị các rối loạn nhịp tim thất ác tính, hoặc phá hủy nhịp tim định vị (STAR). Các nguyên tắc của STAR và nhu cầu chưa được đáp ứng trong việc phá hủy rối loạn nhịp tim được mô tả. Sinh lý bệnh cơ bản của tác động phá hủy bằng tia xạ lên các mô tim, kinh nghiệm lâm sàng cho đến nay, và các hướng đi trong tương lai được thảo luận. Nghiên cứu tiền lâm sàng cơ bản đã chỉ ra trong các mô hình động vật lớn (lợn, chó) rằng việc cung cấp năng lượng SR đến các mục tiêu tim, đặc biệt là phá hủy nhĩ trái đối với rung nhĩ, dẫn đến bằng chứng sinh lý và mô học về tác động điều trị mà không có dấu hiệu thiệt hại. Các phương pháp điều trị lâm sàng đưa SR đến các mục tiêu thất và nhĩ đối với nhịp tim nhanh thất (VT) và rung nhĩ (AF) đã chứng minh được phản ứng lâm sàng mà không có dấu hiệu thiệt hại hay biến chứng rõ ràng cho đến nay. Trong lĩnh vực mới mẻ nhưng đầy hấp dẫn của phá hủy bằng tia xạ định vị để điều trị rối loạn nhịp tim, bằng chứng tiền lâm sàng đã chứng minh tác động điều trị mà chưa có đến nay nguy cơ thương tổn phụ lớn. Trong kinh nghiệm lâm sàng hạn chế điều trị cả rối loạn nhịp thất và nhĩ, lợi ích lâm sàng trong việc giảm rối loạn nhịp mà không có nguy cơ biến chứng đáng kể đã được quan sát. Nghiên cứu cơ chế cơ bản hơn nữa, cải tiến các phương pháp cung cấp, và tăng cường kinh nghiệm lâm sàng vẫn là điều được mong đợi và cần thiết.

Từ khóa


Tài liệu tham khảo

Zei PC, Soltys S. Ablative radiotherapy as a noninvasive alternative to catheter ablation for cardiac arrhythmias. Curr Cardiol Rep. 2017;19(9):79. https://doi.org/10.1007/s11886-017-0886-2.

Gianni C, Mohanty S, Trivedi C, di Biase L, al-Ahmad A, Natale A, et al. Alternative approaches for ablation of resistant ventricular tachycardia. Card Electrophysiol Clin. 2017;9(1):93–8. https://doi.org/10.1016/j.ccep.2016.10.006.

Tokuda M, Kojodjojo P, Tung S, Tedrow UB, Nof E, Inada K, et al. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013;2(3):e000072. https://doi.org/10.1161/JAHA.113.000072.

Kumar S, Barbhaiya CR, Sobieszczyk P, Eisenhauer AC, Couper GS, Nagashima K, et al. Role of alternative interventional procedures when endo- and epicardial catheter ablation attempts for ventricular arrhythmias fail. Circ Arrhythm Electrophysiol. 2015;8(3):606–15. https://doi.org/10.1161/CIRCEP.114.002522.

Sacher F, Roberts-Thomson K, Maury P, Tedrow U, Nault I, Steven D, et al. Epicardial ventricular tachycardia ablation: a multicenter safety study. J Am Coll Cardiol. 2010;55(21):2366–72. https://doi.org/10.1016/J.JACC.2009.10.084.

Della Bella P, Brugada J, Zeppenfeld K, Merino J, Neuzil P, Maury P, et al. Epicardial ablation for ventricular tachycardia: a European multicenter study. Circ Arrhythmia Electrophysiol. 2011;4(5):653–9. https://doi.org/10.1161/CIRCEP.111.962217.

Sacher F, Sobieszczyk P, Tedrow U, Eisenhauer AC, Field ME, Selwyn A, et al. Transcoronary ethanol ventricular tachycardia ablation in the modern electrophysiology era. Hear Rhythm. 2008;5(1):62–8. https://doi.org/10.1016/j.hrthm.2007.09.012.

Sapp JL, Beeckler C, Pike R, Parkash R, Gray CJ, Zeppenfeld K, et al. Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia. Circulation. 2013;128(21):2289–95. https://doi.org/10.1161/CIRCULATIONAHA.113.003423.

•• Cuculich PS, Schill MR, Kashani R, et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377(24):2325–36. https://doi.org/10.1056/NEJMoa1613773 This paper describes the only case series published in full of STAR used for VA ablation in humans.

•• Zei P, Gardner E, Fogarty T, Maguire P. P1809Noninvasive cardiac radiosurgery: current clinical experience for treatment of refractory arrhythmias. EP Eur. 2017;19(suppl_3):iii402-iii402. https://doi.org/10.1093/ehjci/eux161.118 This abstract describes the only other case series of STAR used for VA ablation in.

Robinson CG, Kashani R, Bradley JD, Roach MC, Mutic S, Schill M, et al. Noninvasive stereotactic cardiac ablation for recurrent ventricular tachycardia (VT): technical considerations and early clinical experience. Int J Radiat Oncol. 2016;96(2):E503. https://doi.org/10.1016/j.ijrobp.2016.06.1890.

Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–50. https://doi.org/10.1161/CIRCEP.115.002765.

•• Jumeau R, Ozsahin M, Schwitter J, et al. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol. 2018. https://doi.org/10.1016/j.radonc.2018.04.025 This case report details the only published use of STAR for VT storm.

Cvek J, Neuwirth R, Knybel L, et al. Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. 2014;6(7):e190. https://doi.org/10.7759/cureus.190.

Zei PC, Wong D, Gardner E, Fogarty TMP. Safety and efficacy of stereotactic radioablation targeting pulmonary vein tissues in an experimental model. Hear Rhythm. 2018;15(9):1420–7.

Sharma A, Wong D, Weidlich G, Fogarty T, Jack A, Sumanaweera T, et al. Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. Hear Rhythm. 2010;7(6):802–10. https://doi.org/10.1016/j.hrthm.2010.02.010.

Potters L, Kavanagh B, Galvin JM, Hevezi JM, Janjan NA, Larson DA, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol. 2010;76(2):326–32. https://doi.org/10.1016/j.ijrobp.2009.09.042.

Gore EM, Hu C, Bar Ad V, Robinson CG, Wheatley MD, Bogart JA, et al. Impact of incidental cardiac radiation on cardiopulmonary toxicity and survival for locally advanced non-small cell lung cancer: reanalysis of NRG oncology/RTOG 0617 with centrally contoured cardiac structures. Int J Radiat Oncol Biol Phys. 2016;96(2):S129–30.

Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Onco. 2017;35(13):1395–402.

Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94.

• Wang Y, Cuculich PS, Zhang J, et al. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3(98):98ra84-98ra84. https://doi.org/10.1126/scitranslmed.3002152 This paper discusses the potential of ECGI for substrate mapping.

ZHANG J, COOPER DH, DESOUZA KA, et al. Electrophysiologic scar substrate in relation to VT: noninvasive high-resolution mapping and risk assessment with ECGI. Pacing Clin Electrophysiol. 2016;39(8):781–91. https://doi.org/10.1111/pace.12882.

Cuculich PS, Zhang J, Wang Y, Desouza KA, Vijayakumar R, Woodard PK, et al. The electrophysiological cardiac ventricular substrate in patients after myocardial infarction. J Am Coll Cardiol. 2011;58(18):1893–902. https://doi.org/10.1016/j.jacc.2011.07.029.

Di Biase L, Santangeli P, Burkhardt DJ, et al. Endo-epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2012;60(2):132–41. https://doi.org/10.1016/j.jacc.2012.03.044.

Tanner H, Hindricks G, Volkmer M, et al. Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter euro-VT-study. J Cardiovasc Electrophysiol. 2010;21(1):47–53. https://doi.org/10.1111/j.1540-8167.2009.01563.x.

Stevenson WG, Wilber DJ, Natale A, Jackman WM, Marchlinski FE, Talbert T, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008;118(25):2773–82. https://doi.org/10.1161/CIRCULATIONAHA.108.788604.

Berruezo A, Fernández-Armenta J, Andreu D, Penela D, Herczku C, Evertz R, et al. Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation. Circ Arrhythm Electrophysiol. 2015;8(2):326–36. https://doi.org/10.1161/CIRCEP.114.002386.

Gerstenfeld EP. Recurrent ventricular tachycardia after catheter ablation in post-infarct cardiomyopathy: “failure” of ablation or progression of the substrate? J Am Coll Cardiol. 2013;61(1):74–6. https://doi.org/10.1016/J.JACC.2012.07.057.

Tong Y, Yin Y, Lu J, Liu T, Chen J, Cheng P, et al. Quantification of heart, pericardium, and left ventricular myocardium movements during the cardiac cycle for thoracic tumor radiotherapy. Onco Targets Ther. 2018;11:547–54. https://doi.org/10.2147/OTT.S155680.

Wang L, Fahimian B, Soltys SG, Zei P, Lo A, Gardner EA, et al. Stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia: a treatment planning study. Cureus. 2016;8(7):e694. https://doi.org/10.7759/cureus.694.

Blanck O, Bode F, Gebhard M, Hunold P, Brandt S, Bruder R, et al. Dose-escalation study for cardiac radiosurgery in a porcine model. Int J Radiat Oncol. 2014;89(3):590–8. https://doi.org/10.1016/j.ijrobp.2014.02.036.

Refaat MM, Ballout JA, Zakka P, Hotait M, al Feghali KA, Gheida IA, et al. Swine atrioventricular node ablation using stereotactic radiosurgery: methods and in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. J Am Heart Assoc. 2017;6(11):e007193. https://doi.org/10.1161/JAHA.117.007193.

Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4). https://doi.org/10.1016/j.semradonc.2008.04.001.

Videtic GMM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR, et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys. 2015;93(4):757–64.

Blanck O, Ipsen S, Chan MK, Bauer R, Kerl M, Hunold P, et al. Treatment planning considerations for robotic guided cardiac radiosurgery for atrial fibrillation. Cureus. 2016;8(7):e705. https://doi.org/10.7759/cureus.705.

Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol. 2001;19(1):164–70.

Abelson JA, Murphy JD, Loo BW Jr, Chang DT, Daly ME, Wiegner EA, et al. Esophageal tolerance to high-dose stereotactic ablative radiotherapy. Dis Esophagus. 2012;25(7):623–9.

Maguire PJ, Cardonna CE, De La Pena C, Hinojosa MA, Assad JL, Azpiri J, et al. First-in-man cardiac radiosurgery for atrial arrhythmia. Int J Radiat Oncol Biol Phys. 2016;96(2):E504–5.

Lehmann HI, Richter D, Prokesch H, Graeff C, Prall M, Simoniello P, et al. Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. Circ Arrhythmia Electrophysiol. 2015;8(2):429–38. https://doi.org/10.1161/CIRCEP.114.002436.

Lehmann HI, Graeff C, Simoniello P, Constantinescu A, Takami M, Lugenbiel P, et al. Feasibility study on cardiac arrhythmia ablation using high-energy heavy ion beams. Sci Rep. 2016;6(1):38895. https://doi.org/10.1038/srep38895.

Kim E-J, Davogustto G, Stevenson WG, John RM. Non-invasive cardiac radiation for ablation of ventricular tachycardia: a new therapeutic paradigm in electrophysiology. Arrhythmia Electrophysiol Rev. 2018;7(1):8–10. https://doi.org/10.15420/aer.7.1.EO1.

Fahimian BP, Loo BW, Soltys SG, et al. First in-human stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia: dynamic tracking delivery analysis and implications. Int J Radiat Oncol. 2015;93(3):E466–7. https://doi.org/10.1016/j.ijrobp.2015.07.1738.