Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments
Tóm tắt
Từ khóa
Tài liệu tham khảo
S.-S. Ahn and Y.-J. Lee, “Novel spherical robot with hybrid pendulum driving mechanism,” Adv. Mech. Eng. 2014, 456727 (2014).
I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside,” Regul. Chaotic Dyn. 19(2), 198–213 (2014) [Nelinein. Din. 9(3), 547–566 (2013)].
A. V. Borisov, Yu. L. Karavaev, I. S. Mamaev, N. N. Erdakova, T. B. Ivanova, and V. V. Tarasov, “Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane,” Regul. Chaotic Dyn. 20(5), 518–541 (2015) [Nelinein. Din. 11(3), 547–577 (2015)].
A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control the Chaplygin ball using rotors. II,” Regul. Chaotic Dyn. 18(1–2), 144–158 (2013) [Nelinein. Din. 9(1), 59–76 (2013)].
A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Dynamics and control of an omniwheel vehicle,” Regul. Chaotic Dyn. 20(2), 153–172 (2015).
A. V. Borisov and I. S. Mamaev, “Equations of motion of non-holonomic systems,” Usp. Mat. Nauk 70(6), 203–204 (2015) [Russ. Math. Surv. 70, 1167–1169 (2015)].
A. V. Borisov and I. S. Mamaev, “Notes on new friction models and nonholonomic mechanics,” Usp. Fiz. Nauk 185(12), 1339–1341 (2015) [Phys. Usp. 58, 1220–1222 (2015)].
A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “The Jacobi integral in nonholonomic mechanics,” Regul. Chaotic Dyn. 20(3), 383–400 (2015) [Nelinein. Din. 11(2), 377–396 (2015)].
R. Chase and A. Pandya, “A review of active mechanical driving principles of spherical robots,” Robotics 1(1), 3–23 (2012).
W.-H. Chen, C.-P. Chen, W.-S. Yu, C.-H. Lin, and P.-C. Lin, “Design and implementation of an omnidirectional spherical robot Omnicron,” in Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Kaohsiung (Taiwan), 2012 (IEEE, Piscataway, NJ, 2012), pp. 719–724.
V. A. Crossley, “A literature review on the design of spherical rolling robots,” Preprint (Carnegie Mellon Univ., Pittsburgh, PA, 2006).
F. R. Hogan and J. R. Forbes, “Modeling of spherical robots rolling on generic surfaces,” Multibody Syst. Dyn. 35(1), 91–109 (2015).
T. B. Ivanova and E. N. Pivovarova, “Comments on the paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev ‘How to control the Chaplygin ball using rotors. II’,” Regul. Chaotic Dyn. 19(1), 140–143 (2014) [Nelinein. Din. 10(1), 127–132 (2014)].
Yu. L. Karavaev and A. A. Kilin, “The dynamics and control of a spherical robot with an internal omniwheel platform,” Regul. Chaotic Dyn. 20(2), 134–152 (2015) [Nelinein. Din. 11(1), 187–204 (2015)].
J. Lee and W. Park, “Design and path planning for a spherical rolling robot,” in Proc. ASME 2013 International Mechanical Engineering Congress and Exposition (ASME, 2013, paper no. IMECE2013-64994).
M. Svinin, Y. Bai, and M. Yamamoto, “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot,” in Robotics and Automation: Proc. 2015 IEEE Int. Conf. (ICRA) (IEEE, Piscataway, NJ, 2015), pp. 656–661.
T. Ylikorpi, P. Forsman, A. Halme, and J. Saarinen, “Unified representation of decoupled dynamic models for pendulum-driven ball-shaped robots,” in Proc. 28th Eur. Conf. on Modelling and Simulation, Brescia, 2014 (ECMS, 2014), pp. 411–420.
T. Ylikorpi and J. Suomela, “Ball-shaped robots,” in Climbing and Walking Robots: Towards New Applications, Ed. by H. Zhang (I-Tech Educ. Publ., Vienna, 2007), pp. 235–256.
T. Yu, H. Sun, Q. Jia, Y. Zhang, and W. Zhao, “Stabilization and control of a spherical robot on an inclined plane,” Res. J. Appl. Sci. Eng. Technol. 5(6), 2289–2296 (2013).
Q. Zhan, “Motion planning of a spherical mobile robot,” in Motion and Operation Planning of Robotic Systems: Background and Practical Approaches (Springer, Cham, 2015), pp. 361–381.