Nonexpansive mappings in metric and Banach spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beck A.,A convexity condition in Banach spaces and the strong law of large numbers. Proc. Amer. Math. Soc. 13 (1962), 329–334.
Brodskii M. S. andMilman D. P.,On the center of a convex set. Dokl. Akad. Nauk SSSR 59 (1948), 837–840 (Russian).
Browder F. E.,Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1055.
Browder F. E.,Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 660–665.
Bruck R. E.,A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Israel J. Math. 32 (1979), 107–116.
Bruck R. E.,On the convex approximation property and the asymptotic behaviour of nonlinear contractions in Banach spaces. Israel J. Math. (to appear).
Bruck R. E., Kirk W. A. andReich S.,Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces (to appear).
Day M. M., James R. C. andS. Swaminathan S.,Normed linear spaces that are uniformly convex in every direction. Canadian J. Math. 23 (1971), 1051–1059.
Dunford N. andSchwartz J.,Linear Operators. Vol. 1, Interscience, New York, 1958.
Goebel K.,An elementary proof of a fixed point theorem of Browder and Kirk. Michigan J. Math. 16 (1969), 381–383.
Kirk W. A.,A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004–1006.
Kirk W. A.,Fixed point theory for nonexpansive mappings. Proc. Workshop on Fixed Point Theory, Univ. de Sherbrooke, June 1980 (to appear).
Kirk W. A.,An abstract fixed point theorem for nonexpansive mappings. Proc. Amer. Math. Soc. (to appear).
Lim T. C.,Asymptotic center and nonexpansive mappings in some conjugate spaces. Pacific J. Math. 90 (1980), 135–143.
Penot J. P.,Fixed point theorems without convexity, Analyse non convexe [1977, Pau]. Bull. Soc. Math. France, Mémoire 60 (1979), 129–152.
Reich S.,Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67 (1979), 274–276.
Reich S.,Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287–292.