Noncolliding system of continuous-time random walks

Syota Esaki1
1Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481–515 (2000).

Decreusefond, L., Flint, I., Low, K.C: Perfect simulation of determinantal point processes. arXiv:math.PR/1311.1027.

Dyson, F.J: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962).

Eichelsbacher, P., König, W.: Ordered random walks. Electron. J. Probab. 13(46), 1307–1336 (2008).

Forrester, P.J: Log-gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010).

Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965).

Goldman, A.: The Palm measure and the Voronoi tessellation for the Ginibre process. Ann. Appl. Probab. 20, 90–128 (2010).

Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001).

Katori, M.: Determinantal martingales and noncolliding diffusion processes. Stochastic Process. Appl. 124, 3724–3768 (2014).

Katori, M.: Determinantal martingales and correlations of noncolliding random walks. arXiv:math.PR/1307.1856.

Katori, M., Tanemura, H.: Zeros of Airy function and relaxation process. J. Stat. Phys. 136, 1177–1204 (2009).

Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010).

Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592–615 (2011).

Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model. Electron. Commun. Probab. 18(4), 1–16 (2013).

König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surveys. 2, 385–447 (2005).

König, W., O’Connell, N., Roch, S.: Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7, 1–24 (2002).

Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Foundations Trends Mach. Learn. 5(2–3), 123–286 (2012).

Levin, B.Ya: Lectures on Entire Functions. Translations of Mathematical Monographs, Vol. 150. Providence, American Mathematical Society (1996).

Mehta, M.L: Random Matrices. third ed. Elsevier, Amsterdam (2004).

Miyoshi, N., Shirai, T.: A cellular network model with Ginibre configured base stations. Adv. Appl. Probab. 46, 832–845 (2014).

Osada, H.: Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theor. Relat. Field. 153, 471–509 (2012).

Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41, 1–49 (2013).

Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: airy random point field. Stochastic Process. Appl. 123, 813–838 (2013).

Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999).

Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003).

Soshnikov, A.: Determinantal random point fields. Russian Math. Surveys. 55, 923–975 (2000).

Watson, G.N: A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge Univ. Press., Cambridge (1944).