Noncolliding system of continuous-time random walks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481–515 (2000).
Decreusefond, L., Flint, I., Low, K.C: Perfect simulation of determinantal point processes. arXiv:math.PR/1311.1027.
Dyson, F.J: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962).
Forrester, P.J: Log-gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010).
Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965).
Goldman, A.: The Palm measure and the Voronoi tessellation for the Ginibre process. Ann. Appl. Probab. 20, 90–128 (2010).
Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001).
Katori, M.: Determinantal martingales and noncolliding diffusion processes. Stochastic Process. Appl. 124, 3724–3768 (2014).
Katori, M.: Determinantal martingales and correlations of noncolliding random walks. arXiv:math.PR/1307.1856.
Katori, M., Tanemura, H.: Zeros of Airy function and relaxation process. J. Stat. Phys. 136, 1177–1204 (2009).
Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010).
Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592–615 (2011).
Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model. Electron. Commun. Probab. 18(4), 1–16 (2013).
König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surveys. 2, 385–447 (2005).
König, W., O’Connell, N., Roch, S.: Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7, 1–24 (2002).
Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Foundations Trends Mach. Learn. 5(2–3), 123–286 (2012).
Levin, B.Ya: Lectures on Entire Functions. Translations of Mathematical Monographs, Vol. 150. Providence, American Mathematical Society (1996).
Mehta, M.L: Random Matrices. third ed. Elsevier, Amsterdam (2004).
Miyoshi, N., Shirai, T.: A cellular network model with Ginibre configured base stations. Adv. Appl. Probab. 46, 832–845 (2014).
Osada, H.: Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theor. Relat. Field. 153, 471–509 (2012).
Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41, 1–49 (2013).
Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: airy random point field. Stochastic Process. Appl. 123, 813–838 (2013).
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999).
Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003).
Watson, G.N: A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge Univ. Press., Cambridge (1944).