Noncoercive variational inequalities for pseudomonotone operators

Franco Tomarelli1
1Dipartimento di Matematica del Politecnico di Milano, Milano, Italia

Tóm tắt

Từ khóa


Tài liệu tham khảo

[ADM]Ambrosio L., D'Ancona P. & Mortola S., «Gamma-convergence and the least squares method».Preprint Scuola Normale Superiore, Pisa (1991).

[A]Anzellotti G., «BV solutions of quasi-linear PDEs in divergence form».Comm. in Part. Diff. Eq., 12, 1, (1987), 77–122.

[ASV]Ang D. D., Schmitt K. &Vy L. K., «Noncoercive variational inequalities: some applications».J.N.A. T.M.A., 15, N. 6, (1990) 497–512.

[BBGT]Baiocchi C., Buttazzo G., Gastaldi F. &Tomarelli F., «General Existence Theorems for Unilateral Problems in Continuum Mechanics».Arch. Rat. Mech. Anal.,100, 2 (1988), 149–180.

[BGT]Baiocchi C., Gastaldi F. &Tomarelli F., «Some existence results on non-coercive variational inequalities».Ann. Scuola Norm. Sup., Pisa, (4)13, (1986), 617–659.

[B]Brezis H., «Equations et inéquations non linéaires dans les espaces vectoriels en dualité».Ann. nst. Fourier,18, 1 (1968), 115–175.

[Bd]Browder F. E., «Nonlinear monotone operators and convex sets in Banach spaces».Bull. Am. Math. Soc.,71, (1965), 780–785.

[BT1]Buttazzo G. &Tomarelli F., «Compatibility conditions for nonlinear Neumann problems».Adv. in Math.,89, N. 2, (1991) 127–143.

[BT2]Buttazzo G. & Tomarelli F., «Noncoercive problems»,to appear.

[D]Dieudonné J., «Sur la séparation ds ensembles convexes».Math. Ann., 163, (1966), 1–3.

[F]Fichera G., «Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno».Atti Accad. Naz. Lincei Mem. Sez. I, (8)7 (1964), 71–140.

[GT]Gastaldi F. &Tomarelli F., «Some remarks on nonlinear and noncoercive variational inequalities».Boll. U.M.I. (7),1-B, (1987) 143–165.

[G]Geymonat G.,Private communication.

[Gw]Gwinner A., «Closed Images of Convex Multivalued Mappings in linear Topological Spaces with Applications».J. Math. Anal. and Appl.,60 (1977).

[L]Lions J. L., «Quelques méthodes de résolution des problèmes aux limites nonlineaires».Dunod, Paris, (1969).

[M]Mosco U., «A remark on a theorem of F. E. Browder».J. Math. Anal. and Appl.,20 (1967), 90–93.

[R]Rockafellar, «Convex Analysis».Princeton University Press, Princeton (1970).Rodrigues J. F., «Some Remarks on the Quasi Linear Non-Coercive

[Ro] Elliptic Obstacle Problem».Preprint C.M.A.F. (1989).

[Sc]Schatzman M., «Problèmes aux limites nonlinéaires, non coercifs».Ann. Scuola Norm. Sup. Pisa Cl. Sci., (3)27 (1973), 641–686.