Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
For fundamentals of modern electrodics, see: Bockris, J. O'M. Reddy, A. K. N. Modern Electrochemistry, 2nd ed.; Plenum Press: New York, 2000; Vol. 2.
For elementary readings concerning battery technology and chemistry, see: Linden, D., Ed. Handbook of Batteries, 2nd ed.; McGraw-Hill: New York, 1995; 3rd ed.; McGraw-Hill: New York, 2001.
The redox potentials against the standard hydrogen electrode (SHE) for various reactions, usually called “electrochemical series”, are listed in the annually updated CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL. On the other hand, unless otherwise indicated, the potential values used in this review are all referred to the Li+/Li reference electrode.
Fraioly, A. V.; Barber, W. A.; Feldman, A. M.U.S. Patent 3,551,205, 1970.
Schneider, A. A.; Moser, J.U.S. Patent 3,674,562, 1972.
Fukuda, M.; Ijima, T. In Power Sources; Collins, D. H., Ed.; Academic Press: London, 1975; Vol. 5, p 713.
Broadhead, J.; Trumbore, F. A. In Power Sources; Collins, D. H., Ed.; Academic Press: London, 1975; Vol. 5, p 661.
Dominey, L. A. In Nonaqueous Electrochemistry; Aurbach, D., Ed.; Marcel-Dekker: New York, 1999; Chapter 8.
Armand, M. In Materials for Advanced Batteries; Murphy, D. W., Broadhead, J., Steele, B. C. H., Eds.; Plenum Press: New York, 1980; p 145.
Nagaura T., 1989, Prog. Batteries Sol. Cells, 8, 84
Nagaura T., 1990, Prog. Batteries Sol. Cells, 9, 209
Nishi, Y.; Azuma, H.; Omaru, A.U.S. Patent 4,959,281, 1990.
Nagaura, T. Proceedings of the 5th International Seminar on Lithium Battery Technology and Applications, Deerfield Beach, FL, March 5−7, 1990; Florida Educational Seminars, Inc. Boca Raton, FL.
Dahn, J. R.; von Sacken, U.; Fong, R. Extended Abstracts of the 178thElectrochemical Society Meeting, Seattle, WA, Oct. 14−19, 1990; Abstract No. 42; Electrochemical Society: Pennington, NJ.
Brodd, J. Extended Abstracts of the 201st Electrochemical Society Meeting, Philadelphia, PA, May 12−17, 2002; Abstract No. 259; Electrochemical Society: Pennington, NJ.
Hannon, D. Purchasing Magazine 2002, Feb. 21.
Broussely, M. 11th International Meeting on Lithium Batteries, Monterey, CA, June 23−28, 2002; Abstract No. 415; Electrochemical Society: Pennington, NJ.
Fry, A. J. Synthetic Organic Electrochemistry, 2nd ed.; John Wiley: London, 1989.
The physical data were extracted and compiled from the following literature sources: (a) Jang, G. J.; Tomkins, R. P. T. Nonaqueous Electrolytes Handbook; Academic Press: New York, 1972; Vol. 1. (b) Dudley, J. T.; Wilkinson, D. P.; Thomas, G.; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M. W.; Denis, B.; Juric, P.; Aghakian, P.; Dahn, J. R.J. Power Sources1991, 35, 59. (c) Aldrich Handbook of Fine Chemicals and Laboratory Equipment; Aldrich Chemical Co. 2003−2004. (d) Ue, M.; Ida, K.; Mori, S.J. Electrochem. Soc.1994, 141, 2989. (e) Ding, M. S.; Xu, K.; Zhang, S.; Jow, T. R.J. Electrochem. Soc.2001, 148, A299.
Harris, W. S. Electrochemical Studies in Cyclic Esters. Ph.D. Thesis, University of California, Berkeley, CA, 1958.
Elliott, W. Report No. 1, Contract NAS 3-6015 (N 65-11518), Sept 1964.
Linden, D. In Handbook of Batteries, 2nd ed. Linden, D., Ed.; McGraw-Hill: New York, 1995; Chapters 14 and 36.
Ravdel, B.; Abraham, K. M.; Gitzendanner, R.; Marsh, C. Extended Abstracts of the 200th Electrochemical Society Meeting, San Francisco, CA, Sept 2−7, 2001; Abstract No. 97; Electrochemical Society: Pennington, NJ.
Hossain, S. Handbook of Batteries, 2nd ed. Linden, D., Ed.; McGraw-Hill: New York, 1995; Chapter 36.
Armand, M.; Gorecki, W.; Andreani, R. Proceedings of the 2nd International Meeting on Polymer Electrolytes; Scrosati, B., Ed.; Elsevier: London, 1989; p 91.
Methlie, G. J.U.S. Patent 3,415,687, 1968.
Plichta, E. J.; Behl, W. K. Proceedings of the 38th Power Sources Conference, Cherry Hill, NJ, 1998; p 444.
It should be pointed out that the simple summation of the contribution from each individual ionic species comes from the assumption that the Kohlrausch independent ion rule, established for infinitely diluted solutions, still applies in the electrolytes of practical salt concentrations (∼1.0 M), which is incorrect due to the intensive interionic couplings in the latter. However, eq 1 remains qualitatively useful (see ref (1)).
For an excellent introductory reading on ac impedance techniques for the purpose of ion conductivity measurement or study of interfacial properties, please see: Linford, R. G. In Electrochemical Science and Technology of Polymers, 2nd ed. Linford, R. G., Ed.; Elsevier Applied Science: London, 1990; p 281.
Blomgren, G. E. In Lithium Batteries; Gabano, J. P., Ed.; Academic Press: London, 1983.
Zhou G., 1989, Polym. Commun., 30, 52
Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworths: London, 1959; p 392.
Some organic nitrogen-containing compounds (nitriles, nitroalkyls, amides, etc.) are the rare exceptions to this rule. For example, for acetonitrile, ε = 36 and η = 0.3 cP at room temperature. However, the poor electrochemical stability of these compounds prevented them from being used in batteries.
Jasinski R., 1968, Electrochem. Technol., 6, 28
Smedley, S. I. The Interpretation of Ionic Conductivity in Liquids; Plenum Press: New York, 1980; Chapter 3.
Bard, A. J.; Faulkner, L. R. Electrochemical Methods─Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2000.
Kita, F.; Kawakami, A.; Sonoda, T.; Kobayashi, H. In New Sealed Rechargeable Batteries and Supercapacitors; Barnett, B. M., Dowgiallo, E., Halpert, G., Matsuda, Y., Takehara, Z., Eds.; The Electrochemical Society Proceedings Series; Pennington, NJ, 1993; PV 93-23, p 321.
Peled, E. In Lithium Batteries; Gabano, J. P., Eds.; Academic Press: London, 1983; p 43.
Hérold A., 1955, Bull. Soc. Chim. Fr., 187, 999
Graphite Intercalation Compounds, Vol. I and II; Zabel, H., Solin, S. A., Eds.; Springer-Verlag: New York, 1990 and 1992.
Bagouin, M.; Guérard, D.; Hérold, A. C. R. Acad. Sci., Ser. C1966, 262, 557.
Guérard, D.; Hérold, A. C. R. Acad. Sci., Ser. C1972, 275, 571.
The configuration of the “half anode cell” enables the separate evaluation of the anode material alone; thus, it is widely used as a convenient tool. However, it should be kept in mind that the “anode materials” under study are actually “cathode materials” in this half-cell: Li|electrolyte|carbonaceous “anode”. To make things more confusing, different researchers use both “charge” (referring to this carbonaceous material in an imaginary full lithium ion cell, therefore, conceptually correct) and “discharge” (referring to this half-cell, therefore, operationally correct) to describe the same process of lithiating the carbon electrode in this half-cell. Since there is no standard convention, caution must be taken when electrochemical literature concerning this topic is being studied. This review will use less ambiguous terms such as “lithiation” or “delithiation” for the cycling of anode half-cells.
Although by the solution method the ternary GICs composed of [Li+(solv)−graphite] were indeed synthesized and identified by XRD, the solvents used were mostly ether compounds that have high donicity toward lithium ion. Similar Li GICs with carbonate molecules were never obtained. On the contrary, even via the solution method, binary GICs (i.e., bare lithium ion intercalation without solvent) instead of ternary ones were often preferentially formed in these ether solvents, casting more doubt about the possibility of their formation via lithium ion cells. The large c-axis distance measured by XRD for these ternary GICs ranged between 7 and 11 Å and confirmed from another angle that in situ XRD carried out on a graphite anode during its cycling never detected such GICs. See refs 257−260 for the preparation and characterization of various ternary GICs based on ether compounds and lithium ion.
Some metal oxide structures are unstable when over-delithiated, and as a consequence, the crystal lattice collapses to form a new phase that is electrochemically inactive. Examples are the so-called “Jahn−Teller effect” for spinel cathodes and similar behavior for LiNiO2 and LiCoO2 materials as well. These irreversible processes are considered to be caused by the intrinsic properties of the crystalline materials instead of electrolytes and are, therefore, beyond the scope of the current review. See ref (46) for a detailed review.
Atanasoski R. T., 1992, J. Chem. Soc., 57, 935
Polypropylene or stainless steel containers are normally used, but glass containers can be severely corroded by LiPF6-containing electrolytes, because the formation of gaseous SiF4 serves as the driving force for the reaction between the fluorinated Lewis acids PF5 or HF and the main composition of glass Na2SiO3.
Mogi R., 2002, J. Electrochem. Soc., 149, 2002
Gong, J. B.; Tsumura, T.; Nakamura, H.; Yoshio, M.; Yoshitake, H.; Abe, T. 202nd Meeting of the Electrochemical Society, Salt Lake City, UT, Oct 20−24, 2002; Abstract No. 200; Electrochemical Society: Pennington, NJ.
Morita, M.; Ishikawa, M.; Matsuda, Y. In Lithium Ion Batteries: Fundamentals and Performance; Wakihara, M., Yamamoto, O., Eds.; Wiley-VCH: New York, 1999; p 156.
Simon, B.; Boeuve, J.P.U.S. Patent 5,626,981, 1997.
Barker, J.; Gao, F.U.S. Patent 5,712,059, 1998.
Jehoulet, C.; Biensan, P.; Bodet, J. M.; Broussely, M.; Moteau, C.; Tessier-Lescourret, C. In Batteries for Portable Applications and Electric Vehicles; Holmes, C. F., Landgrebe, A. R., Eds.; The Electrochemical Society Proceeding Series; Pennington, NJ, 1997; P. V. 97-18, P974.
Holleck, G. L.; Harris, P. B.; Abraham, K. M.; Buzby, J.; Brummer, S. B. Technical Report No. 6, Contract N00014-77-0155; EIC Laboratories: Newton, MA, 1982.
Abraham, K. M.; Brummer, S. B. In Lithium Batteries; Gabano, J., Ed.; Academic Press: New York, 1983.
Abraham, K. M.; Pasquariello, D. M.; Willstädt, E. B. Proceedings of the 33rd International Power Sources Symposium, Cherry Hill, NJ, June 13−16, 1988; The Electrochemical Society, Inc. 1988; p 38.
Abraham, K. M.; Pasquariello, D. M.U.S. Patent, 4,857,423, 1989.
Wilkinson, D. P.; Dudley, J.; Golovin, N. In Rechargeable Lithium Batteries; Subbarao, S., Koch, V. R., Owens, B. B., Smyrl, W. H., Eds.; The Electrochemical Society: Pennington, NJ, 1990; PV 90-5, p 77.
Abraham, K. M. In Rechargeable Lithium Batteries; Subbarao, S., Koch, V. R., Owens, B. B., Smyrl, W. H., Eds.; The Electrochemical Society: Pennington, NJ, 1990; PV 90-5, p 1.
Mao, H.; Wainwright, D. S. Canadian Patent 2,205,683, 1997.
Yoshio, M.; Yoshitake, H.; Abe, K. 204th Meeting of Electrochemical Society, Orlando, FL, Oct 12−16, 2003; Abstract No. 280.
Kuboki, T.; Ohsaki, T.U.S. Patent 6,413,679, 2002.
Reimers, J. N.; Way, B. M.U.S. Patent 6,074,777, 2000.
Mao, H. Canadian Patent 2,163,187, 1995.
Yoshino, A. In Proceedings of the 4th Hawaii Battery Conference, ARAD Enterprises, Hilo, HI, Jan 8, 2002; ARAD Enterprises: Hilo, HI; p 102.
Besenhard, J. O.; von Werner, K.; Winter, M. US. Patent 5,916,708, 1999.
Petrella, R. V. In Flame Retardant Polymeric Materials; Lewin, M., Atlas, S. M., Pearce, E. M., Eds.; Plenum Publishing: New York, 1978; Vol. 2, p 159.
Cullis, C. F.; Hirshler, M. M. The Combustion of Organic Polymers; Clarendon Press: Oxford, 1981.
For this reason ClEC and FEC were treated as cosolvents in this review, instead of as additives as they were in most literature sources.
Nagasubramanian, G. The 1999 Joint International Meeting of the Electrochemical Society, Honolulu, HI, Oct 17−22, 1999; Abstract 334; Electrochemical Society: Pennington, NJ.
Dominey, L. A.U.S. Patent, 5,273,840, 1993.
Lischka, U.; Wietelmann, U.; Wegner, M. DE 19829030 C1, 1999.
Sartori, P.; Ignatyev, N. The 194th Meeting of the Electrochemical Society, Boston, MA, Nov 1−6, 1998; Abstract 160.
Sartori, P.; Ignatyev, N.U.S. Patent 6,210,830, 2001.
Plichta, E. J.; Behl, W. K. Proceedings of the 38th Power Source Conference, Cherry Hill, NJ, 1998; p 444.
Gitzendanner, R.; Ehrlich, G.; Marsh, C.; Marsh, R. The 194th Meeting of the Electrochemical Society, Boston, MA, Nov 1−6, 1998; Abstract 157; Electrochemical Society: Pennington, NJ.
The physical significance of the impedance response corresponding to the semicircle at lower frequency has been ambiguous. Conventionally it was assigned to the “charge-transfer” for the electrochemical reactions; hence, conceptually, it should not be influenced by electrolytes due to the presence of the electronically insulating surface films. However, experiences show that it is in fact readily affected by the chemical composition of the electrolytes; therefore, it should involve an interfacial process that is sensitive to the surface film formation. There was a suggestion (see ref (518)) that the SEI is a mixed conductor for both ions and electrons, so that the electrons can transport across it to reach the redox reaction sites. This hypothesis is well able to explain why Rct is affected by SEI chemical composition, however, at the risk of overturning the fundamentals of lithium ion chemistry.
Roth, E. P.; Crafts, C. C.; Doughty, D. H. The 202nd Meeting of the Electrochemical Society, Salt Lake City, UT, Oct 20−24, 2002; Abstract 216.
(a) Yokoyama, K.; Fujita, S.; Hiwara, A.; Naruse, Y.; Toriida, M.; Omaru, A.U.S. Patent 5,580,684, 1996.
(b) Narang, S. C.; Ventura, S. C.; Dougherty, B. J.; Zhao, M.; Smedley, S.; Koolpe, G.U.S. Patent 5,830,600, 1998.
(c) Narang, S. C.; Ventura, S. C.; Cox, P.U.S. Patent 6,168,885, 2001.
Lyons, J. W. The Chemistry and Uses of Flame Retardants; John Wiley & Sons: New York, 1970.
Cullis, C. F.; Hirshler, M. M. The Combustion of Organic Polymers; Clarendon Press: Oxford, 1981.
Watanabe, M. In Solid State Ionics: Materials and Applications; Chowdari, B. V. R., Ed.; World Scientific Publishing Co. Singapore, 1992; p 149.
Sanchez, J.Y. In Solid State Ionics: Materials and Applications; Chowdari, B. V. R., Ed.; World Scientific Publishing Co. 1992; p 159.
Shriver, D. F.; Bruce, P. G. In Solid State Electrochemistry; Bruce, P. G., Ed.; Cambridge University Press: Cambridge, U.K., 1995; p 95.
(a) Armand, M. B.; Chabagno, J. M.; Duclot, M. The 2nd International Conference on Solid Electrolytes, St. Andrews, Scotland, 1978; Abstract No. 65.
(b) Armand, M. B.; Chabagno, J. M.; Duclot, M. In Fast Ion Transport in Solids; Duclot, M. J., Vashishta, P., Mundy, J. N., Shenoy, G. K., Eds.; North-Holland, Amsterdam, 1979.
Feuillade G., 1975, J. Appl. Electrochem., 63, 5