Non-uniform order mixed FEM approximation: Implementation, post-processing, computable error bound and adaptivity

Journal of Computational Physics - Tập 231 - Trang 436-453 - 2012
Mark Ainsworth1, Xinhui Ma1
1Mathematics Department, Strathclyde University, 26 Richmond Street, Glasgow G1 1XH, Scotland, United Kingdom

Tài liệu tham khảo

Schwab, 1998 Guo, 1986, The h-p version of the finite element method. Part 1 the basic approximation results, Comput. Mech., 1, 21, 10.1007/BF00298636 Guo, 1986, The h-p version of the finite element method. Part 2 general results and applications, Comput. Mech., 1, 203, 10.1007/BF00272624 Brezzi, 1991 Ainsworth, 2002, hp-approximation theory for BDFM and RT finite elements on quadrilaterals, SIAM J. Numer. Anal., 40, 2047, 10.1137/S0036142901391128 Demkowicz, 2007, Computing with hp-adaptive finite elements, vol. 1 Demkowicz, 2008, Computing with hp-adaptive finite elements, vol. 2 Arnold, 1985, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél Math Anal Numér, 19, 7, 10.1051/m2an/1985190100071 Stenberg, 1991, Postprocessing schemes for some mixed finite elements, RAIRO Modél Math Anal Numér, 25, 151, 10.1051/m2an/1991250101511 Alonso, 1996, Error estimators for a mixed method, Numer. Math., 74, 385, 10.1007/s002110050222 Lovadina, 2006, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comput., 75, 1659, 10.1090/S0025-5718-06-01872-2 Braess, 1996, A posteriori error estimators for the Raviart–Thomas element, SIAM J. Numer. Anal., 33, 2431, 10.1137/S0036142994264079 Carstensen, 1997, A posteriori error estimate for the mixed finite element method, Math. Comput., 66, 465, 10.1090/S0025-5718-97-00837-5 Vohralı´k, 2010, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comput., 79, 2001, 10.1090/S0025-5718-2010-02375-0 Vohralı´k, 2007, A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations, SIAM J. Numer. Anal., 45, 1570, 10.1137/060653184 Ainsworth, 2007, A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput., 30, 189, 10.1137/06067331X Ainsworth, 2003, Hierarchic finite element bases on unstructured tetrahedral meshes, Internat. J. Numer. Methods Eng., 58, 2103, 10.1002/nme.847 Marsden, 1994 M. Ainsworth, B. Senior, Aspects of an adaptive hp-finite element method: adaptive strategy, conforming approximation and efficient solvers, Comput. Methods Appl. Mech. Eng. 1997; 150(1–4): 65–87. (doi:10.1016/S0045-7825(97)00101-1. Symposium on Advances in Computational Mechanics, vol. 2 (Austin, TX, 1997); URL <http://www.dx.doi.org/10.1016/S0045-7825(97)00101-1>. Kron, 1953, A set of principles to interconnect the solutions of physical systems, J. Appl. Phys., 24, 965, 10.1063/1.1721447 Marini, 1985, An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method, SIAM J. Numer. Anal., 22, 493, 10.1137/0722029 Stenberg, 1990, Some new families of finite elements for the Stokes equations, Numer. Math., 56, 827, 10.1007/BF01405291 Ainsworth, 2007, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45, 1777, 10.1137/060665993