Non-symmetric Exponential Laws in the Construct PRTOP

Applied Categorical Structures - Tập 10 - Trang 251-256 - 2002
M. Sioen1
1Belgium

Tóm tắt

We show that the construct PRTOP of pre-topological spaces and continuous maps admits a proper class of monoidal closed structures.

Tài liệu tham khảo

Adámek, J., Herrlich, H., and Strecker, G.: Abstract and Concrete Categories, Wiley, New York, 1990. Booth, P. and Tillotson, J.: Monoidal closed, Cartesian closed and convenient categories of topological spaces, Pacific. J. Math. 88(1) (1980), 35–53. Borceux, F.: Handbook of Categorical Algebra. Parts I, II and III, Encyclopedia of Mathematics Vols. 50, 51 and 52, Cambridge University Press, 1994. Brown, R.: Function spaces and product topologies, Quart. J. Math. Oxford 15 (1964), 238–250. Činčura, J.: On a tensorproduct in initially structured categories, Math. Slovaca 29(3) (1979), 245–255. Činčura, J.: Tensorproducts in the category of topological spaces, Comm. Math. Univ. Carolinae 20(3) (1979), 431–445. Eilenberg, S. and Kelley, G. M.: Closed categories, in Proc. Conf. on Categ. Algebra, La Jolla 1965, Springer-Verlag, New York, 1966, pp. 421–562. Greve, G.: How many monoidal closed structures are there in TOP? Arch. Math.34 (1980), 538–539. Greve, G.: General construction of monoidal closed structures in topological, uniform and nearness spaces, in Category Theory, LNM 962, Springer, Berlin, 1982, pp. 100–114. Herrlich, H. and Hu?sek, M.: Some open categorical problems in TOP, Appl. Categ. Struct. 1 (1993), 1–19. Lowen-Colebunders, E. and Sonck, G.: Exponential objects and Cartesian closedness in the construct PRTOP, Appl. Categ. Struct. 1 (1993), 345–360. MacLane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer-Verlag, New York, 1971.