Non-stationary $$\phi$$-contractions and associated fractals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrawal, V., and T. Som. 2021. Fractal dimension of $$\alpha$$-fractal function on the Sierpiński Gasket. The European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-021-00304-9.
Agrawal, V., and T. Som. 2022. $$L^{p}$$ approximation using fractal functions on the Sierpiński gasket. Results Math 77: 74. https://doi.org/10.1007/s00025-021-01565-5.
Agrawal, V., T. Som, and S. Verma. 2022. On bivariate fractal approximation. The Journal of Analysis 30: 1765–1783.
Barnsley, M.F. 1988. Fractals everywhere. Orlando: Academic Press.
Chandra, S., and S. Abbas. 2021. The calculus of fractal interpolation surfaces. Fractals. https://doi.org/10.1142/S0218348X21500663.
Chandra, S., and S. Abbas. 2021. Analysis of mixed Weyl-Marchaud fractional derivative and box dimensions. Fractals. https://doi.org/10.1142/S0218348X21501450.
Chandra, S., and S. Abbas. 2022. Analysis of fractal dimension of mixed Riemann-Liouville integral. Numerical Algorithms. https://doi.org/10.1007/s11075-022-01290-2.
Chandra, S., and S. Abbas. 2022. Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. Fractional Calculus and Applied Analysis. https://doi.org/10.1007/s13540-022-00050-2.
Chandra, S., and S. Abbas. 2022. On fractal dimensions of fractal functions using functions spaces. Bulletin of the Australian Mathematical Society. https://doi.org/10.1017/S0004972722000685.
Clarkson, J.A., and C.R. Adams. 1933. On definitions of bounded variation for functions of two variables. Transactions of the American Mathematical Society 35: 824–854.
Dyn, N., D. Levin, and P. Massopust. 2020. Attractors of trees of maps and of sequences of maps between spaces and applications to subdivision. Journal of Fixed Point Theory and Applications. https://doi.org/10.1007/s11784-019-0750-7.
Dyn, N., D. Levin, and V.P. Veedu. 2019. Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. Journal of Fixed Point Theory and Applications 21 (1): 26. https://doi.org/10.1007/s11784-019-0659-1.
Graf, S. 1987. Statistically self-similar fractals. Probability Theory and Related Fields 74: 357–392.
Jha, S., and S. Verma. 2022. A study on fractal operator corresponding to non-stationary fractal interpolation functions. In Frontiers of fractal analysis recent advances and challenges, 50–66. Cham: Springer.
Jha, S., S. Verma, and A.K.B. Chand. (2022). Non-stationary zipper $$\alpha$$-fractal functions and associated fractal operator, Accepted for publication in Fractional Calculus and Applied Analysis.
Jha, S., and S. Verma. 2021. Dimensional analysis of $$\alpha$$ -fractal functions. Results in Mathematics 76 (4): 1–24.
Liang, Y.S. 2010. Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Analysis 72 (11): 4304–4306.
Mihail, A., and R. Miculescu. 2009. A generalization of the Hutchinson measure. Mediterranean Journal of Mathematics 6: 203–213.
Pandey, M., T. Som, and S. Verma. 2021. Fractal dimension of Katugampola fractional integral of vector-valued functions. The European Physical Journal Special Topics 230: 3807–3817.
S. Ri. 2018. A new idea to construct the fractal interpolation function , Indagationes Mathematicae.
Sahu, A., and A. Priyadarshi. 2020. On the box-counting dimension of Graphs of harmonic functions on the Sierpiński gasket. Journal of Mathematical Analysis and Applications 487: 124.
Secelean, N.A. 2012. The existence of the attractor of countable iterated function systems. Mediterranean Journal of Mathematics 9: 61–79.
Secelean, N.A. 2014. Generalized iterated function systems on the space $${l}^{\infty }(X)$$, N.-A Secelean. Journal of Mathematical Analysis and Applications 410: 847–858.
Secelean, N.A. 2014. Invariant measure associated with a generalized countable iterated function system. Mediterranean Journal of Mathematics 11: 361–372.
Strobin, F. 2015. Attractors of generalized IFSs that are not attractors of IFSs. Mathematical Analysis and Applications 422: 99–108.
Verma, S., and P.R. Massopust. 2022. Dimension preserving approximationn. To appear in Aequationes. Mathematicae. https://doi.org/10.48550/arXiv.2002.05061.
Verma, S., and Y.S. Liang. 2020. Effect of the Riemann-Liouville fractional integral on unbounded variation points. Natural Science Foundation of China. https://doi.org/10.48550/arXiv.2008.11113.
Verma, S., and A. Sahu. 2022. Bounded variation on the Sierpiński Gasket. Fractals. https://doi.org/10.1142/S0218348X2250147X.
Verma, S., and P. Viswanathan. 2020. Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indagationes Mathematicae 31: 294–309.
Verma, S., and P. Viswanathan. 2020. A fractalization of rational trigonometric functions. Mediterranean Journal of Mathematics 17: 93.