Non-standard inversion method of ellipsometric equations for uniaxially anisotropic 2D materials on semiconductor or metallic substrates

Peep Adamson1
1Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu 50411, Estonia

Tài liệu tham khảo

Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458 Li, 2017, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics, Appl. Phys. Rev., 4, 10.1063/1.4983646 Duong, 2017, Van der Waals layered materials: opportunities and challenges, ACS Nano, 11, 11803, 10.1021/acsnano.7b07436 Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z Ling, 2015, The renaissance of black phosphorus, PNAS, 112, 4523, 10.1073/pnas.1416581112 Tsai, 2016, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306 Shi, 2018, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev., 47, 6046, 10.1039/C7CS00886D Randviir, 2014, A decade of graphene research: production, applications and autlook, Mater. Today, 17, 426, 10.1016/j.mattod.2014.06.001 Bao, 2012, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano, 6, 3677, 10.1021/nn300989g Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech., 7, 699, 10.1038/nnano.2012.193 Majérus, 2018, Electrodynamics of two-dimensional materials: role of anisotropy, Phys. Rev. B, 98, 10.1103/PhysRevB.98.125419 Ohno, 2008, Monolayer oxidation on Si(001)-(2×1) studied by means of reflectance difference spectroscopy, Phys. Rev. B, 77, 10.1103/PhysRevB.77.085319 Lazzari, 2009, Adhesion of growing nanoparticles at a glance: surface differential reflectivity spectroscopy and grazing incidence small angle x-ray scattering, Phys. Rev. B, 79, 10.1103/PhysRevB.79.125428 Simonot, 2010, In situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering, Thin Solid Films, 518, 2637, 10.1016/j.tsf.2009.08.005 Fujiwara, 2007 Garcia-Caurel, 2013, Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization, Appl. Spectrosc., 67, 1, 10.1366/12-06883 Losurdo, 2009, Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives, J. Nanopart. Res., 11, 1521, 10.1007/s11051-009-9662-6 Oates, 2011, Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry, Progr. Surf. Sci., 86, 328, 10.1016/j.progsurf.2011.08.004 Gilliot, 2017, Inversion of ellipsometry data using constrained spline analysis, Appl. Opt., 56, 1173, 10.1364/AO.56.001173 Adamson, 2017, Reflectance calculations of anisotropic dielectric constants of graphene-like two-dimensional materials, Appl. Opt., 56, 7832, 10.1364/AO.56.007832 Nelson, 2012, Optical and structural characterization of epitaxial graphene on vicinal 6H-SiC(0001)–Si by spectroscopic ellipsometry, Auger spectroscopy, and STM, J. Vac. Sci. Technol. B, 30, 10.1116/1.4726199 Song, 2018, Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry, Appl. Surf. Sci., 439, 1079, 10.1016/j.apsusc.2018.01.051 Adamson, 2018, Ellipsometry of anisotropic graphene-like two-dimensional materials on transparent substrates, Opt. Quantum Electron., 50, 403, 10.1007/s11082-018-1673-z Ferrari, 2007, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47, 10.1016/j.ssc.2007.03.052 Tan, 2012, The shear mode of multilayer graphene, Nat. Mater., 11, 294, 10.1038/nmat3245 Wang, 2012, Thickness identification of two-dimensional materials by optical imaging, Nanotechnology, 23, 10.1088/0957-4484/23/49/495713 Shearer, 2016, Accurate thickness measurement of graphene, Nanotechnology, 27, 10.1088/0957-4484/27/12/125704 Adamson, 2017, A sensitive reflection method for optical diagnostics of graphene layers, Optik, 138, 180, 10.1016/j.ijleo.2017.02.086 Lekner, 1987 Klintenberg, 2009, Evolving properties of two-dimensional materials: from graphene to graphite, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/33/335502 Nelson, 2010, Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry, Appl. Phys. Lett., 97, 10.1063/1.3525940 Weber, 2010, Optical constants of graphene measured by spectroscopic ellipsometry, Appl. Phys. Lett., 97, 10.1063/1.3475393 Cheon, 2014, How to reliably determine the complex refractive index of graphene by using two independent measurement constraints, Sci. Rep., 4, 6364, 10.1038/srep06364 Ochoa-Martínez, 2015, Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene, Nanoscale, 7, 1491, 10.1039/C4NR06119E Li, 2016, Broadband optical properties of graphene by spectroscopic ellipsometry, Carbon, 99, 348, 10.1016/j.carbon.2015.12.007 Kravets, 2010, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption, Phys. Rev. B, 81, 10.1103/PhysRevB.81.155413 Matkovic, 2013, Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry, J. Appl. Phys., 114, 10.1063/1.4819967 Adamson, 2014, Ellipsometry of anisotropic (sub)nanometric dielectric films on absorbing materials, J. Mod. Opt., 61, 424, 10.1080/09500340.2014.890255 Adamson, 2018, A method for reducing the effect of surface contamination layers in reflection diagnostics of graphene-like 2D materials, Nano, 13, 10.1142/S1793292018500443 Aspnes, 1983, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 27, 985, 10.1103/PhysRevB.27.985 Aspnes, 1986, Optical properties of AlxGa1−xAs, J. Appl. Phys., 60, 754, 10.1063/1.337426 Johnson, 1972, Optical constants of the noble metals, Phys. Rev. B, 6, 4370, 10.1103/PhysRevB.6.4370