Non-rigid-registration-based positioning and labelling of triaxial OPMs on a flexible cap for wearable magnetoencephalography
Tài liệu tham khảo
Abdi, 2010, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat., 2, 433, 10.1002/wics.101
Arun, 1987, Least-squares fitting of two 3-D point sets, IEEE Trans. Pattern Anal. Mach. Intell., 698, 10.1109/TPAMI.1987.4767965
Baillet, 2013, Forward and inverse problems of MEG/EEG, 1
Besl, P.J., McKay, N.D., 1992. Method for registration of 3-D shapes. Presented at the Sensor Fusion IV: Control Paradigms and Data Structures, SPIE, pp. 586–606. https://doi.org/10.1117/12.57955.
Boto, 2016, On the potential of a new generation of magnetometers for MEG: a beamformer simulation study, PLoS One, 11, 10.1371/journal.pone.0157655
Boto, 2018, Moving magnetoencephalography towards real-world applications with a wearable system, Nature, 555, 657, 10.1038/nature26147
Boto, 2019, Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography, Neuroimage, 201, 10.1016/j.neuroimage.2019.116099
Boto, 2022, Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children, NeuroImage, 252, 10.1016/j.neuroimage.2022.119027
Cao, 2023, Optical co-registration method of triaxial OPM-MEG and MRI, IEEE Trans. Med. Imaging, 1
Cohen, 1972, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer, Science, 175, 664, 10.1126/science.175.4022.664
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B (Methodol.), 39, 1
Elberling, 1982, Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole, Acta Neurol. Scand., 65, 553, 10.1111/j.1600-0404.1982.tb03110.x
Gu, 2021, Automatic coregistration of MRI and on-scalp MEG, J. Neurosci. Methods, 10.1016/j.jneumeth.2021.109181
Guo, 2023, A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography, Chin. Phys. B, 32
Hämäläinen, 1993, Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., 65, 413, 10.1103/RevModPhys.65.413
He, 2019, A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography, Rev. Sci. Instrum., 90, 10.1063/1.5066250
Hill, 2020, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system, Neuroimage, 219, 10.1016/j.neuroimage.2020.116995
Holmes, 2023, Naturalistic hyperscanning with wearable magnetoencephalography, Sensors, 23, 5454, 10.3390/s23125454
Iivanainen, 2017, Measuring MEG closer to the brain: performance of on-scalp sensor arrays, Neuroimage, 147, 542, 10.1016/j.neuroimage.2016.12.048
Iivanainen, 2022, Calibration and localization of optically pumped magnetometers using electromagnetic coils, Sensors, 22, 3059, 10.3390/s22083059
Kominis, 2003, A subfemtotesla multichannel atomic magnetometer, Nature, 422, 596, 10.1038/nature01484
Myronenko, 2010, Point set registration: coherent point drift, IEEE Trans. Pattern Anal. Mach. Intell., 32, 2262, 10.1109/TPAMI.2010.46
Oostenveld, 2011, FieldTrip: open source software for sdvanced snalysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci., 2011, 10.1155/2011/156869
Osborne, J., Orton, J., Alem, O., Shah, V., 2018. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism, in: Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI. Presented at the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, SPIE, pp. 89–95. https://doi.org/10.1117/12.2299197.
Pfeiffer, 2018, Localizing on-scalp MEG sensors using an array of magnetic dipole coils, PLoS One, 13, 10.1371/journal.pone.0191111
Pfeiffer, 2020, On-scalp MEG sensor localization using magnetic dipole-like coils: a method for highly accurate co-registration, Neuroimage, 212, 10.1016/j.neuroimage.2020.116686
Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D registration, in: 2009 IEEE International Conference on Robotics and Automation. Presented at the 2009 IEEE International Conference on Robotics and Automation, IEEE, pp. 3212–3217. https://doi.org/10.1109/robot.2009.5152473.
Seymour, 2021, Using OPMs to measure neural activity in standing, mobile participants, Neuroimage, 244, 10.1016/j.neuroimage.2021.118604
Shah, 2013, A compact, high performance atomic magnetometer for biomedical applications, Phys. Med. Biol., 58, 8153, 10.1088/0031-9155/58/22/8153
Sheng, 2017, A microfabricated optically-pumped magnetic gradiometer, Appl. Phys. Lett., 110, 10.1063/1.4974349
Sheng, 2017, Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer, Rev. Sci. Instrum., 88, 10.1063/1.5001730
Tadel, 2011, Brainstorm: a user-friendly application for MEG/EEG analysis, Comput. Intel. Neurosci., 2011, 10.1155/2011/879716
Welch, 1967, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Acoust. Speech, 15, 70
Xia, 2006, Magnetoencephalography with an atomic magnetometer, Appl. Phys. Lett., 89, 10.1063/1.2392722
Zetter, 2018, Requirements for coregistration accuracy in on-scalp MEG, Brain Topogr., 31, 931, 10.1007/s10548-018-0656-5
Zetter, 2019, Optical co-registration of MRI and on-scalp MEG, Sci. Rep., 9, 10.1038/s41598-019-41763-4
Zimmerman, 1970, Design and operation of stable rf‐biased superconducting point‐contact quantum devices, and a note on the properties of perfectly clean metal contacts, J. Appl. Phys., 41, 1572, 10.1063/1.1659074