Non-rigid-registration-based positioning and labelling of triaxial OPMs on a flexible cap for wearable magnetoencephalography

Journal of Neuroscience Methods - Tập 401 - Trang 110010 - 2024
Wenyu Gu1,2,3, Dongxu Li1,2,3, Jia-Hong Gao1,2,3,4,5
1Center for MRI Research, Peking University, Beijing 100871, China
2Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
3Changping Laboratory, Beijing 102206, China
4McGovern Institute for Brain Research, Peking University, Beijing 100871, China
5National Biomedical Imaging Center, Peking University, Beijing 100871, China

Tài liệu tham khảo

Abdi, 2010, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat., 2, 433, 10.1002/wics.101 Arun, 1987, Least-squares fitting of two 3-D point sets, IEEE Trans. Pattern Anal. Mach. Intell., 698, 10.1109/TPAMI.1987.4767965 Baillet, 2013, Forward and inverse problems of MEG/EEG, 1 Besl, P.J., McKay, N.D., 1992. Method for registration of 3-D shapes. Presented at the Sensor Fusion IV: Control Paradigms and Data Structures, SPIE, pp. 586–606. https://doi.org/10.1117/12.57955. Boto, 2016, On the potential of a new generation of magnetometers for MEG: a beamformer simulation study, PLoS One, 11, 10.1371/journal.pone.0157655 Boto, 2018, Moving magnetoencephalography towards real-world applications with a wearable system, Nature, 555, 657, 10.1038/nature26147 Boto, 2019, Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography, Neuroimage, 201, 10.1016/j.neuroimage.2019.116099 Boto, 2022, Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children, NeuroImage, 252, 10.1016/j.neuroimage.2022.119027 Cao, 2023, Optical co-registration method of triaxial OPM-MEG and MRI, IEEE Trans. Med. Imaging, 1 Cohen, 1972, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer, Science, 175, 664, 10.1126/science.175.4022.664 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B (Methodol.), 39, 1 Elberling, 1982, Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole, Acta Neurol. Scand., 65, 553, 10.1111/j.1600-0404.1982.tb03110.x Gu, 2021, Automatic coregistration of MRI and on-scalp MEG, J. Neurosci. Methods, 10.1016/j.jneumeth.2021.109181 Guo, 2023, A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography, Chin. Phys. B, 32 Hämäläinen, 1993, Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., 65, 413, 10.1103/RevModPhys.65.413 He, 2019, A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography, Rev. Sci. Instrum., 90, 10.1063/1.5066250 Hill, 2020, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system, Neuroimage, 219, 10.1016/j.neuroimage.2020.116995 Holmes, 2023, Naturalistic hyperscanning with wearable magnetoencephalography, Sensors, 23, 5454, 10.3390/s23125454 Iivanainen, 2017, Measuring MEG closer to the brain: performance of on-scalp sensor arrays, Neuroimage, 147, 542, 10.1016/j.neuroimage.2016.12.048 Iivanainen, 2022, Calibration and localization of optically pumped magnetometers using electromagnetic coils, Sensors, 22, 3059, 10.3390/s22083059 Kominis, 2003, A subfemtotesla multichannel atomic magnetometer, Nature, 422, 596, 10.1038/nature01484 Myronenko, 2010, Point set registration: coherent point drift, IEEE Trans. Pattern Anal. Mach. Intell., 32, 2262, 10.1109/TPAMI.2010.46 Oostenveld, 2011, FieldTrip: open source software for sdvanced snalysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci., 2011, 10.1155/2011/156869 Osborne, J., Orton, J., Alem, O., Shah, V., 2018. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism, in: Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI. Presented at the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, SPIE, pp. 89–95. https://doi.org/10.1117/12.2299197. Pfeiffer, 2018, Localizing on-scalp MEG sensors using an array of magnetic dipole coils, PLoS One, 13, 10.1371/journal.pone.0191111 Pfeiffer, 2020, On-scalp MEG sensor localization using magnetic dipole-like coils: a method for highly accurate co-registration, Neuroimage, 212, 10.1016/j.neuroimage.2020.116686 Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D registration, in: 2009 IEEE International Conference on Robotics and Automation. Presented at the 2009 IEEE International Conference on Robotics and Automation, IEEE, pp. 3212–3217. https://doi.org/10.1109/robot.2009.5152473. Seymour, 2021, Using OPMs to measure neural activity in standing, mobile participants, Neuroimage, 244, 10.1016/j.neuroimage.2021.118604 Shah, 2013, A compact, high performance atomic magnetometer for biomedical applications, Phys. Med. Biol., 58, 8153, 10.1088/0031-9155/58/22/8153 Sheng, 2017, A microfabricated optically-pumped magnetic gradiometer, Appl. Phys. Lett., 110, 10.1063/1.4974349 Sheng, 2017, Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer, Rev. Sci. Instrum., 88, 10.1063/1.5001730 Tadel, 2011, Brainstorm: a user-friendly application for MEG/EEG analysis, Comput. Intel. Neurosci., 2011, 10.1155/2011/879716 Welch, 1967, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Acoust. Speech, 15, 70 Xia, 2006, Magnetoencephalography with an atomic magnetometer, Appl. Phys. Lett., 89, 10.1063/1.2392722 Zetter, 2018, Requirements for coregistration accuracy in on-scalp MEG, Brain Topogr., 31, 931, 10.1007/s10548-018-0656-5 Zetter, 2019, Optical co-registration of MRI and on-scalp MEG, Sci. Rep., 9, 10.1038/s41598-019-41763-4 Zimmerman, 1970, Design and operation of stable rf‐biased superconducting point‐contact quantum devices, and a note on the properties of perfectly clean metal contacts, J. Appl. Phys., 41, 1572, 10.1063/1.1659074