Non-redundancy within the RAS oncogene family: Insights into mutational disparities in cancer

Elsevier BV - Tập 28 - Trang 315-320 - 2009
Ken S. Lau1, Kevin M. Haigis1
1Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, USA

Tóm tắt

The RAS family of oncoproteins has been studied extensively for almost three decades. While we know that activation of RAS represents a key feature of malignant transformation for many cancers, we are only now beginning to understand the complex underpinnings of RAS biology. Here, we will discuss emerging cancer genome sequencing data in the context of what is currently known about RAS function. Taken together, retrospective studies of primary human tissues and prospective studies of experimental models support the notion that the variable mutation frequencies exhibited by the RAS oncogenes reflect unique functions of the RAS oncoproteins.

Tài liệu tham khảo

Abraham, S.J., Nolet, R.P., Calvert, R.J., Anderson, L.M., and Gaponenko, V. (2009). The Hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin. Biochemistry 48, 7575–7583. Bivona, T.G., Quatela, S.E., Bodemann, B.O., Ahearn, I.M., Soskis, M.J., Mor, A., Miura, J., Wiener, H.H., Wright, L., Saba, S.G., et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493. Borner, C., Schlagbauer Wadl, H., Fellay, I., Selzer, E., Polterauer, P., and Jansen, B. (1999). Mutated N-ras upregulates Bcl-2 in human melanoma in vitro and in SCID mice. Melanoma Res. 9, 347–350. Braun, B.S., Tuveson, D.A., Kong, N., Le, D.T., Kogan, S.C., Rozmus, J., Le Beau, M.M., Jacks, T.E., and Shannon, K.M. (2004). Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl. Acad. Sci. USA 101, 597–602. Chang, E.H., Gonda, M.A., Ellis, R.W., Scolnick, E.M., and Lowy, D.R. (1982). Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl. Acad. Sci. USA 79, 4848–4852. Chiu, V.K., Bivona, T., Hach, A., Sajous, J.B., Silletti, J., Wiener, H., Johnson, R.L., 2nd, Cox, A.D., and Philips, M.R. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350. Cox, A.D., and Der, C.J. (2003). The dark side of Ras: regulation of apoptosis. Oncogene 22, 8999–9006. Der, C.J., Krontiris, T.G., and Cooper, G.M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl. Acad. Sci. USA 79, 3637–3640. Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J.A., Bastian, B.C., Springer, C., and Marais, R. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491. Edkins, S., O’Meara, S., Parker, A., Stevens, C., Reis, M., Jones, S., Greenman, C., Davies, H., Dalgliesh, G., Forbes, S., et al. (2006). Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol. Ther. 5, 928–932. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H.J., and Kloog, Y. (2002). Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277, 37169–37175. Elad-Sfadia, G., Haklai, R., Balan, E., and Kloog, Y. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279, 34922–34930. Engelman, J.A., Luo, J., and Cantley, L.C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619. Guerra, C., Mijimolle, N., Dhawahir, A., Dubus, P., Barradas, M., Serrano, M., Campuzano, V., and Barbacid, M. (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120. Haigis, K.M., Kendall, K.R., Wang, Y., Cheung, A., Haigis, M.C., Glickman, J.N., Niwa-Kawakita, M., Sweet-Cordero, A., Sebolt-Leopold, J., Shannon, K.M., et al. (2008). Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608. Hamilton, M., and Wolfman, A. (1998). Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo. Oncogene 16, 1417–1428. Hancock, J.F. (2003). Ras proteins: different signals from different locations. Nat. Rev. 4, 373–384. Harvey, J.J. (1964). An unidentified virus which causes the rapid production of tumours in mice. Nature 204, 1104–1105. Henis, Y.I., Hancock, J.F., and Prior, I.A. (2009). Ras acylation, compartmentalization and signaling nanoclusters (Review). Mol. Membr. Biol. 26, 80–92. Jansen, B., Schlagbauer-Wadl, H., Eichler, H.G., Wolff, K., van Elsas, A., Schrier, P.I., and Pehamberger, H. (1997). Activated N-ras contributes to the chemoresistance of human melanoma in severe combined immunodeficiency (SCID). mice by blocking apoptosis. Cancer Res. 57, 362–365. Keller, J.W., Franklin, J.L., Graves-Deal, R., Friedman, D.B., Whitwell, C.W., and Coffey, R.J. (2007a). Oncogenic KRAS provides a uniquely powerful and variable oncogenic contribution among RAS family members in the colonic epithelium. J. Cell. Physiol. 210, 740–749. Keller, J.W., Haigis, K.M., Franklin, J.L., Whitehead, R.H., Jacks, T., and Coffey, R.J. (2007b). Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS: gelsolin complex. Oncogene 26, 3051–3059. Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X.F., Seed, B., and Avruch, J. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253–265. Kirsten, W.H., Schauf, V., and McCoy, J. (1970). Properties of a murine sarcoma virus. Bibl. Haematol. 36 246–249. Klampfer, L., Huang, J., Sasazuki, T., Shirasawa, S., and Augenlicht, L. (2004). Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression. J. Biol. Chem. 279, 36680–36688. Leon, J., Guerrero, I., and Pellicer, A. (1987). Differential expression of the ras gene family in mice. Mol. Cell. Biol. 7, 1535–1540. Liao, J., Planchon, S.M., Wolfman, J.C., and Wolfman, A. (2006). Growth factor-dependent AKT activation and cell migration requires the function of c-K(B).-Ras versus other cellular ras isoforms. J. Biol. Chem. 281, 29730–29738. Maher, J., Baker, D.A., Manning, M., Dibb, N.J., and Roberts, I.A. (1995). Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene 11, 1639–1647. Moodie, S.A., Willumsen, B.M., Weber, M.J., and Wolfman, A. (1993). Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661. Mor, A., and Philips, M.R. (2006). Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24, 771–800. Parada, L.F., Tabin, C.J., Shih, C., and Weinberg, R.A. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478. Parikh, C., Subrahmanyam, R., and Ren, R. (2007). Oncogenic NRAS, KRAS, and HRAS exhibit different leukemogenic potentials in mice. Cancer Res. 67, 7139–7146. Philips, M.R. (2005). Compartmentalized signalling of Ras. Biochem. Soc. Trans. 33, 657–661. Plowman, S.J., and Hancock, J.F. (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim. Biophys. Acta 1746, 274–283. Prior, I.A., and Hancock, J.F. (2001). Compartmentalization of Ras proteins. J. Cell Sci. 114, 1603–1608. Quinlan, M.P., Quatela, S.E., Philips, M.R., and Settleman, J. (2008). Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol. Cell. Biol. 28, 2659–2674. Quinlan, M.P., and Settleman, J. (2009). Isoform-specific ras functions in development and cancer. Future Oncol. 5, 105–116. Radu, M., and Chernoff, J. (2009). The DeMSTification of mammalian Ste20 kinases. Curr. Biol. 19, R421–425. Rodriguez-Viciana, P., Warne, P.H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M.J., Waterfield, M.D., and Downward, J. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532. Santos, E., Tronick, S.R., Aaronson, S.A., Pulciani, S., and Barbacid, M. (1982). T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298, 343–347. Seger, R., and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J. 9, 726–735. Sensi, M., Nicolini, G., Petti, C., Bersani, I., Lozupone, F., Molla, A., Vegetti, C., Nonaka, D., Mortarini, R., Parmiani, G., et al. (2006). Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 25, 3357–3364. Shalom-Feuerstein, R., Cooks, T., Raz, A., and Kloog, Y. (2005). Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res. 65, 7292–7300. Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., Feramisco, J., Stavnezer, E., Fogh, J., and Wigler, M.H. (1983). Three human transforming genes are related to the viral ras oncogenes. Proc. Natl. Acad. Sci. USA 80, 2112–2116. Sidhu, R.S., Clough, R.R., and Bhullar, R.P. (2003). Ca2+/calmodulin binds and dissociates K-RasB from membrane. Biochem. Biophys. Res. Commun. 304, 655–660. Simi, L., Pratesi, N., Vignoli, M., Sestini, R., Cianchi, F., Valanzano, R., Nobili, S., Mini, E., Pazzagli, M., and Orlando, C. (2008). High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. Am. J. Clin. Pathol. 130, 247–253. To, M.D., Wong, C.E., Karnezis, A.N., Del Rosario, R., Di Lauro, R., and Balmain, A. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat. Genet. 40, 1240–1244. Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S., Mercer, K.L., Grochow, R., Hock, H., Crowley, D., et al. (2004). Endogenous oncogenic K-ras(G12D). stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387. Villalonga, P., Lopez-Alcala, C., Bosch, M., Chiloeches, A., Rocamora, N., Gil, J., Marais, R., Marshall, C.J., Bachs, O., and Agell, N. (2001). Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol. Cell. Biol. 21, 7345–7354. Vojtek, A.B., Hollenberg, S.M., and Cooper, J.A. (1993). Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214. Walsh, A.B., and Bar-Sagi, D. (2001). Differential activation of the Rac pathway by Ha-Ras and K-Ras. J. Biol. Chem. 276, 15609–15615. Warne, P.H., Viciana, P.R., and Downward, J. (1993). Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355. Wellbrock, C., Karasarides, M., and Marais, R. (2004). The RAF proteins take centre stage. Nat. Rev. 5, 875–885. Whitwam, T., Vanbrocklin, M.W., Russo, M.E., Haak, P.T., Bilgili, D., Resau, J.H., Koo, H.M., and Holmen, S.L. (2007). Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene 26, 4563–4570. Wolfman, J.C., and Wolfman, A. (2000). Endogenous c-N-Ras provides a steady-state anti-apoptotic signal. J. Biol. Chem. 275, 19315–19323. Yan, Z., Chen, M., Perucho, M., and Friedman, E. (1997). Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin beta1-chain maturation in colon epithelial cells. J. Biol. Chem. 272, 30928–30936. Yan, J., Roy, S., Apolloni, A., Lane, A., and Hancock, J.F. (1998). Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056. Zhang, X.F., Settleman, J., Kyriakis, J.M., Takeuchi-Suzuki, E., Elledge, S.J., Marshall, M.S., Bruder, J.T., Rapp, U.R., and Avruch, J. (1993). Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313. Zuber, J., Tchernitsa, O.I., Hinzmann, B., Schmitz, A.C., Grips, M., Hellriegel, M., Sers, C., Rosenthal, A., and Schafer, R. (2000). A genome-wide survey of RAS transformation targets. Nat. Genet. 24, 144–152.