Non-reciprocal wave propagation in modulated elastic metamaterials

Hussein Nassar1, Huan Chen1, Andrew N. Norris2, Michael R. Haberman3, Guoliang Huang1
1Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
2Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway NJ 08854-8058, USA
3Department of Mechanical Engineering and Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78712, USA

Tóm tắt

Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are demonstrated analytically through an asymptotic analysis based on coupled mode theory and numerically thanks to a series of simulations in harmonic and transient regimes. High-amplitude modulations are then explored in the homogenization limit where a non-standard effective mass operator is recovered and shown to take negative values over unusually large frequency bands. These modulated metamaterials, which exhibit either non-reciprocal behaviours or non-standard effective mass operators, offer promise for applications in the field of elastic wave control in general and in one-way conversion/amplification in particular.

Từ khóa


Tài liệu tham khảo

Brillouin L, 1953, Wave propagation in periodic structures: electric filters and crystal lattices

10.1126/science.289.5485.1734

10.1103/PhysRevE.70.055602

10.1088/1367-2630/8/10/248

10.1103/PhysRevLett.99.093904

10.1088/1367-2630/10/4/043020

10.1016/j.ijsolstr.2012.07.002

10.1038/ncomms6510

10.1038/nphoton.2008.273

10.1063/1.4866590

10.1038/srep09926

10.1126/science.1246957

10.1063/1.4928619

10.1088/1367-2630/18/8/083047

10.1016/j.jmps.2017.01.010

10.1103/PhysRevLett.103.104301

10.1038/ncomms9682

10.1103/PhysRevLett.116.093901

10.1038/nphys3999

Fleury R, 2015, Nonreciprocal acoustics, Acoust. Today, 11, 14

10.1038/ncomms9260

10.1103/PhysRevLett.114.114301

10.1103/PhysRevApplied.5.054021

10.1103/RevModPhys.30.197

10.1109/TMTT.1960.1124657

Louisell W, 1960, Coupled mode and parametric electronics

10.1109/TMTT.1961.1125340

10.1109/PROC.1963.2566

10.1109/PROC.1963.2566

Lurie KA, 2007, An introduction to the mathematical theory of dynamic materials

10.1098/rspa.2016.0819

10.1063/1.4752468

10.1115/1.4028378

10.1088/0964-1726/25/10/105036

10.1103/PhysRevLett.91.133901

10.1016/j.jmps.2011.09.006

10.1103/PhysRevLett.92.245501

Auriault JL, 1985, Dynamics of periodic elastic composites (Dynamique des composites elastiques periodiques), Arch. Mech. Stosow., 37, 269

10.1016/j.ijengsci.2008.12.007

10.1121/1.3672647