Non-oxide semiconductors for artificial photosynthesis: Progress on photoelectrochemical water splitting and carbon dioxide reduction
Tài liệu tham khảo
Montoya, 2017, Nat. Mater., 16, 70, 10.1038/nmat4778
Grätzel, 2001, Nature, 414, 338, 10.1038/35104607
Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326
Hu, 2013, Energy Environ. Sci., 6, 2984, 10.1039/c3ee40453f
Bonke, 2015, Energy Environ. Sci., 8, 2791, 10.1039/C5EE02214B
Blankenship, 2011, Science, 332, 805, 10.1126/science.1200165
Lubitz, 2007, Chem. Rev., 107, 3900, 10.1021/cr050200z
Li, 2015, Nano Today, 10, 468, 10.1016/j.nantod.2015.06.001
Shih, 2018, Joule, 2, 1925, 10.1016/j.joule.2018.08.016
Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425
Reece, 2011, Science, 334, 645, 10.1126/science.1209816
Sivula, 2016, Nat. Rev. Mater., 1, 15010, 10.1038/natrevmats.2015.10
Ager, 2015, Energy Environ. Sci., 8, 2811, 10.1039/C5EE00457H
Luo, 2014, Science, 345, 1593, 10.1126/science.1258307
Bornoz, 2014, J. Phys. Chem. C, 118, 16959, 10.1021/jp500441h
Jang, 2015, Nat. Commun., 6, 7447, 10.1038/ncomms8447
Xu, 2016, RSC Adv., 6, 9905, 10.1039/C5RA20115B
Liao, 2012, Adv. Funct. Mater., 22, 3066, 10.1002/adfm.201102966
Chen, 2011, Nat. Mater., 10, 539, 10.1038/nmat3047
Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017
Hu, 2014, Science, 344, 1005, 10.1126/science.1251428
Bae, 2017, Chem. Soc. Rev., 46, 1933, 10.1039/C6CS00918B
Pijpers, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 10056, 10.1073/pnas.1106545108
Wang, 2014, Chem. Soc. Rev., 43, 7469, 10.1039/C3CS60370A
Chen, 2015, J. Am. Chem. Soc., 137, 9595, 10.1021/jacs.5b03536
Shaner, 2015, Energy Environ. Sci., 8, 203, 10.1039/C4EE03012E
Yang, 2014, J. Am. Chem. Soc., 136, 6191, 10.1021/ja501513t
Yang, 2016, Nat. Mater., 16, 335, 10.1038/nmat4794
Yu, 2017, Adv. Energy Mater., 7
Mei, 2014, J. Phys. Chem. Lett., 5, 3456, 10.1021/jz501872k
Sun, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 3612, 10.1073/pnas.1423034112
Sun, 2015, J. Phys. Chem. Lett., 6, 592, 10.1021/jz5026195
Lichterman, 2014, Energy Environ. Sci., 7, 3334, 10.1039/C4EE01914H
Seger, 2014, Energy Environ. Sci., 7, 2397, 10.1039/C4EE01335B
Mei, 2015, J. Phys. Chem. C, 119, 10.1021/acs.jpcc.5b04407
Zhu, 2015, Nano Energy, 12, 347, 10.1016/j.nanoen.2015.01.001
Kenney, 2013, Science, 342, 836, 10.1126/science.1241327
Digdaya, 2017, Nat. Commun., 8, 15968, 10.1038/ncomms15968
Scheuermann, 2016, Nat. Mater., 15, 99, 10.1038/nmat4451
Zhou, 2015, Energy Environ. Sci., 8, 2644, 10.1039/C5EE01687H
Zhou, 2016, Energy Environ. Sci., 9, 892, 10.1039/C5EE03655K
Strandwitz, 2013, J. Phys. Chem. C, 117, 4931, 10.1021/jp311207x
Hu, 2016, J. Phys. Chem. C, 120, 3117, 10.1021/acs.jpcc.5b09121
Lichterman, 2016, Catal. Today, 262, 11, 10.1016/j.cattod.2015.08.017
Lichterman, 2015, Energy Environ. Sci., 8, 2409, 10.1039/C5EE01014D
Yao, 2016, J. Am. Chem. Soc., 138, 13664, 10.1021/jacs.6b07188
Moreno-Hernandez, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201801155
Ishikawa, 2004, J. Phys. Chem. B, 108, 11049, 10.1021/jp048802u
Haydous, 2019, J. Phys. Chem. C, 123, 1059, 10.1021/acs.jpcc.8b09629
Urabe, 2014, Faraday Discuss., 176, 213, 10.1039/C4FD00122B
Seo, 2018, Adv. Energy Mater., 8
Leroy, 2012, Chem. Commun., 48, 820, 10.1039/C1CC16112A
Ueda, 2015, J. Am. Chem. Soc., 137, 2227, 10.1021/ja5131879
Huang, 2018, Appl. Catal. B, 226, 111, 10.1016/j.apcatb.2017.12.033
Zhou, 2018, J. Mater. Chem. A, 6, 7706, 10.1039/C8TA02233J
Pichler, 2016, Appl. Surf. Sci., 369, 67, 10.1016/j.apsusc.2016.01.197
Wang, 2017, ACS Appl. Mater. Interfaces, 9, 30696, 10.1021/acsami.7b09021
Zhong, 2017, Angew. Chem., Int. Ed., 56, 4739, 10.1002/anie.201700117
Yokoyama, 2011, Thin Solid Films, 519, 2087, 10.1016/j.tsf.2010.10.055
Dang, 2012, J. Phys. Chem. C, 116, 19225, 10.1021/jp307369z
Cong, 2012, Chem. Mater., 24, 579, 10.1021/cm203269n
Fang, 2018, Sci. Bull., 63, 1404, 10.1016/j.scib.2018.10.005
Hajibabaei, 2016, Chem. Sci., 7, 6760, 10.1039/C6SC02116F
Higashi, 2019, Angew. Chem., Int. Ed., 58, 2300, 10.1002/anie.201812081
Higashi, 2011, Energy Environ. Sci., 4, 4138, 10.1039/c1ee01878g
Wang, 2016, Chem. Sci., 7, 4391, 10.1039/C6SC00245E
Akiyama, 2016, Small, 12, 5468, 10.1002/smll.201601929
Feng, 2016, Adv. Mater. Technol., 1, 10.1002/admt.201600119
Feng, 2010, Nano Lett., 10, 948, 10.1021/nl903886e
Wang, 2015, Chem. Mater., 27, 2360, 10.1021/cm503887t
Zhen, 2013, Chem. Commun., 49, 3019, 10.1039/c3cc40760h
Hou, 2013, Energy Environ. Sci., 6, 3322, 10.1039/c3ee41854e
Shi, 2018, Appl. Catal. B, 237, 665, 10.1016/j.apcatb.2018.06.037
Feng, 2014, Adv. Funct. Mater., 24, 3535, 10.1002/adfm.201304046
Zhen, 2016, J. Mater. Chem. A, 4, 2783, 10.1039/C5TA07057K
Wang, 2017, J. Phys. Chem. C, 121, 6864, 10.1021/acs.jpcc.7b01279
Wang, 2015, Phys. Chem. Chem. Phys., 17, 19631, 10.1039/C5CP02606G
Wang, 2014, Phys. Chem. Chem. Phys., 16, 15375, 10.1039/C4CP00120F
Wang, 2014, J. Catal., 309, 291, 10.1016/j.jcat.2013.10.014
Wang, 2014, RSC Adv., 4, 55615, 10.1039/C4RA11053F
Chen, 2011, Appl. Phys. Lett., 99
Feng, 2019, Adv. Funct. Mater., 29
Ziani, 2015, Phys. Chem. Chem. Phys., 17, 2670, 10.1039/C4CP05616G
Feng, 2014, Chem.–Eur. J., 20, 16384, 10.1002/chem.201402760
Kado, 2012, Chem. Commun., 48, 8685, 10.1039/c2cc33822j
Pei, 2018, ACS Appl. Energy Mater., 1, 4150, 10.1021/acsaem.8b00809
Li, 2013, Nat. Commun., 4, 2566, 10.1038/ncomms3566
Seo, 2015, J. Am. Chem. Soc., 137, 12780, 10.1021/jacs.5b08329
Li, 2013, Angew. Chem., Int. Ed., 52, 11016, 10.1002/anie.201305350
Kim, 2013, J. Am. Chem. Soc., 135, 5375, 10.1021/ja308723w
Zhong, 2016, Adv. Funct. Mater., 26, 7156, 10.1002/adfm.201603021
Higashi, 2013, J. Am. Chem. Soc., 135, 10238, 10.1021/ja404030x
Liu, 2016, Energy Environ. Sci., 9, 1327, 10.1039/C5EE03802B
He, 2016, Chem, 1, 640, 10.1016/j.chempr.2016.09.006
Lin, 2014, Nat. Mater., 13, 81, 10.1038/nmat3811
Kast, 2014, ACS Appl. Mater. Interfaces, 6, 22830, 10.1021/am506999p
Choi, 2014, J. Mater. Chem. A, 2, 2928, 10.1039/c3ta14443g
Fan, 2017, J. Mater. Chem. A, 5, 18744, 10.1039/C7TA04986B
Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059
Prabhakar, 2017, J. Mater. Chem. A, 5, 23139, 10.1039/C7TA08993G
Seger, 2013, J. Am. Chem. Soc., 135, 1057, 10.1021/ja309523t
Seger, 2013, J. Mater. Chem. A, 1, 15089, 10.1039/c3ta12309j
Bae, 2016, Sol. Energy Mater. Sol. Cells, 144, 758, 10.1016/j.solmat.2015.10.020
Cheng, 2018, ACS Energy Lett., 3, 1795, 10.1021/acsenergylett.8b00920
Paracchino, 2012, Energy Environ. Sci., 5, 8673, 10.1039/c2ee22063f
Seger, 2013, RSC Adv., 3, 25902, 10.1039/c3ra45966g
Ji, 2015, Nat. Nanotechnol., 10, 84, 10.1038/nnano.2014.277
Naghavi, 2010, Prog. Photovoltaics, 18, 411, 10.1002/pip.955
Merdes, 2013, Prog. Photovoltaics, 21, 88, 10.1002/pip.2165
Cheng, 2018, Adv. Sci., 5, 10.1002/advs.201700362
Gu, 2016, Nat. Mater., 15, 456, 10.1038/nmat4511
Fan, 2015, Nano Lett., 15, 2721, 10.1021/acs.nanolett.5b00535
Marsen, 2008, Sol. Energy Mater. Sol. Cells, 92, 1054, 10.1016/j.solmat.2008.03.009
Luo, 2015, Nano Lett., 15, 1395, 10.1021/nl504746b
Guan, 2015, J. Mater. Chem. A, 3, 7840, 10.1039/C5TA01259G
Kaneko, 2016, Adv. Funct. Mater., 26, 4570, 10.1002/adfm.201600615
Moriya, 2013, J. Am. Chem. Soc., 135, 3733, 10.1021/ja312653y
Shin, 2016, J. Phys. Chem. Lett., 7, 4554, 10.1021/acs.jpclett.6b02010
Wen, 2017, Nano Energy, 41, 18, 10.1016/j.nanoen.2017.09.006
Xiao, 2013, J. Appl. Phys., 114
Ge, 2017, Chem. Mater., 29, 916, 10.1021/acs.chemmater.6b03347
Gershon, 2016, Adv. Energy Mater., 6
Guchhait, 2016, ACS Energy Lett., 1, 1256, 10.1021/acsenergylett.6b00509
Chen, 2016, Nanophotonics, 5, 524, 10.1515/nanoph-2016-0027
Ge, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201601803
Kim, 2012, Energy Environ. Sci., 5, 6368, 10.1039/C1EE02280F
Jiang, 2015, J. Am. Chem. Soc., 137, 13691, 10.1021/jacs.5b09015
Young, 2017, Nat. Energy, 2, 17028, 10.1038/nenergy.2017.28
Boettcher, 2011, J. Am. Chem. Soc., 133, 1216, 10.1021/ja108801m
Seo, 2015, J. Am. Chem. Soc., 137, 3173, 10.1021/ja5126287
Yao, 2018, Adv. Energy Mater., 8
Lin, 2013, Nano Lett., 13, 5615, 10.1021/nl403265k
Esposito, 2013, Nat. Mater., 12, 562, 10.1038/nmat3626
Ji, 2017, Nat. Mater., 16, 127, 10.1038/nmat4801
McKone, 2013, J. Am. Chem. Soc., 135, 223, 10.1021/ja308581g
Yu, 2015, Nat. Commun., 6, 7596, 10.1038/ncomms8596
Berglund, 2014, J. Am. Chem. Soc., 136, 1535, 10.1021/ja411604k
Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a
Saadi, 2014, J. Phys. Chem. C, 118, 29294, 10.1021/jp5054452
Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764
Labrador, 2016, Nano Lett., 16, 6452, 10.1021/acs.nanolett.6b02909
Azarpira, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201402148
Pang, 2018, Chem.–Asian J., 13, 127, 10.1002/asia.201701596
Kumar, 2012, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759
White, 2015, Chem. Rev., 115, 12888, 10.1021/acs.chemrev.5b00370
Zhang, 2018, Sci. China Mater., 61, 771, 10.1007/s40843-017-9151-y
Schweitzer, 2010
Hori, 2008, 89, 10.1007/978-0-387-49489-0_3
Jitaru, 1997, J. Appl. Electrochem., 27, 875, 10.1023/A:1018441316386
Kuhl, 2012, Energy Environ. Sci., 5, 7050, 10.1039/c2ee21234j
Hong, 2013, Anal. Methods, 5, 1086, 10.1039/c2ay26270c
Hara, 1995, J. Electroanal. Chem., 391, 141, 10.1016/0022-0728(95)03935-A
Morales-Guio, 2018, Nat. Catal., 1, 764, 10.1038/s41929-018-0139-9
Duyar, 2018, Angew. Chem., Int. Ed., 57, 15045, 10.1002/anie.201806583
Schreier, 2017, Nat. Energy, 2, 17087, 10.1038/nenergy.2017.87
Zhou, 2016, ACS Energy Lett., 1, 764, 10.1021/acsenergylett.6b00317
Nath, 2016, Nano Energy, 25, 51, 10.1016/j.nanoen.2016.04.025
Yang, 2019, ChemSusChem, 12, 1889, 10.1002/cssc.201801554
Qiao, 2014, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G
Nandjou, 2019, ChemSusChem, 12, 1984, 10.1002/cssc.201802558
Hinogami, 1998, J. Phys. Chem. B, 102, 974, 10.1021/jp972663h
Liu, 1992, J. Electroanal. Chem., 324, 191, 10.1016/0022-0728(92)80050-E
Rao, 2018, J. Mater. Chem. A, 6, 1736, 10.1039/C7TA09672K
Chu, 2016, Angew. Chem. Int. Ed., 55, 14262, 10.1002/anie.201606424
Chu, 2018, J. Am. Chem. Soc., 140, 7869, 10.1021/jacs.8b03067
Li, 2019, Energy Environ. Sci., 12, 923, 10.1039/C8EE02768D
Gurudayal, 2019, Energy Environ. Sci., 12, 1068, 10.1039/C8EE03547D
Halmann, 1978, Nature, 275, 115, 10.1038/275115a0
Barton, 2008, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327
Kronawitter, 2015, J. Phys. Chem. C, 119, 17762, 10.1021/acs.jpcc.5b05361
Jang, 2016, ACS Nano, 10, 6980, 10.1021/acsnano.6b02965
Arai, 2013, Energy Environ. Sci., 6, 1274, 10.1039/c3ee24317f
Lichterman, 2013, J. Phys. Chem. Lett., 4, 4188, 10.1021/jz4022415
Hill, 2015, Nat. Mater., 14, 1150, 10.1038/nmat4408
Yang, 2015, Nano Lett., 15, 7051, 10.1021/acs.nanolett.5b03114
Toma, 2016, Nat. Commun., 7, 12012, 10.1038/ncomms12012
Yu, 2018, Nano Lett., 18, 5335, 10.1021/acs.nanolett.8b02559
Lutterman, 2009, J. Am. Chem. Soc., 131, 3838, 10.1021/ja900023k
Seabold, 2012, J. Am. Chem. Soc., 134, 2186, 10.1021/ja209001d
Voiry, 2016, Nat. Mater., 15, 1003, 10.1038/nmat4660
Gamelin, 2012, Nat. Chem., 4, 965, 10.1038/nchem.1514
Zhao, 2015, Nano Lett., 15, 2517, 10.1021/acs.nanolett.5b00086
Yu, 2017, Nat. Energy, 2, 17045, 10.1038/nenergy.2017.45
Service, 2018, Science, 361, 120, 10.1126/science.361.6398.120
Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105
Li, 2017, Acc. Chem. Res., 50, 112, 10.1021/acs.accounts.6b00523
Mei, 2017, Adv. Sustainable Syst., 1, 10.1002/adsu.201600035
Sayama, 2018, ACS Energy Lett., 3, 1093, 10.1021/acsenergylett.8b00318
Mi, 2012, Energy Environ. Sci., 5, 5694, 10.1039/c2ee02929d
Solarska, 2012, Nanoscale, 4, 1553, 10.1039/c2nr11573e
Hill, 2012, J. Phys. Chem. C, 116, 7612, 10.1021/jp209909b
Fuku, 2016, Chem. Commun., 52, 5406, 10.1039/C6CC01605G
Cha, 2015, Nat. Chem., 7, 328, 10.1038/nchem.2194
Luo, 2008, Appl. Phys. Lett., 92
Li, 2011, Appl. Phys. Lett., 99
Wu, 2018, Adv. Mater., 30
Park, 2016, Nat. Energy, 2, 16185, 10.1038/nenergy.2016.185
Zong, 2014, Energy Environ. Sci., 7, 3347, 10.1039/C4EE01503G
Cui, 2015, ACS Appl. Mater. Interfaces, 7, 25601, 10.1021/acsami.5b01393
Fan, 2016, ACS Appl. Mater. Interfaces, 8, 13857, 10.1021/acsami.6b00809
Fu, 2018, Appl. Phys. Lett., 112
Yang, 2015, Nano Lett., 15, 7574, 10.1021/acs.nanolett.5b03988
Fang, 2019, Research 2019, 9282674