Non-oxide semiconductors for artificial photosynthesis: Progress on photoelectrochemical water splitting and carbon dioxide reduction

Nano Today - Tập 30 - Trang 100830 - 2020
Jianyong Feng1, Huiting Huang1, Shicheng Yan1, Wenjun Luo1, Tao Yu1, Zhaosheng Li1, Zhigang Zou1
1Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, People’s Republic of China

Tài liệu tham khảo

Montoya, 2017, Nat. Mater., 16, 70, 10.1038/nmat4778 Grätzel, 2001, Nature, 414, 338, 10.1038/35104607 Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326 Hu, 2013, Energy Environ. Sci., 6, 2984, 10.1039/c3ee40453f Bonke, 2015, Energy Environ. Sci., 8, 2791, 10.1039/C5EE02214B Blankenship, 2011, Science, 332, 805, 10.1126/science.1200165 Lubitz, 2007, Chem. Rev., 107, 3900, 10.1021/cr050200z Li, 2015, Nano Today, 10, 468, 10.1016/j.nantod.2015.06.001 Shih, 2018, Joule, 2, 1925, 10.1016/j.joule.2018.08.016 Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425 Reece, 2011, Science, 334, 645, 10.1126/science.1209816 Sivula, 2016, Nat. Rev. Mater., 1, 15010, 10.1038/natrevmats.2015.10 Ager, 2015, Energy Environ. Sci., 8, 2811, 10.1039/C5EE00457H Luo, 2014, Science, 345, 1593, 10.1126/science.1258307 Bornoz, 2014, J. Phys. Chem. C, 118, 16959, 10.1021/jp500441h Jang, 2015, Nat. Commun., 6, 7447, 10.1038/ncomms8447 Xu, 2016, RSC Adv., 6, 9905, 10.1039/C5RA20115B Liao, 2012, Adv. Funct. Mater., 22, 3066, 10.1002/adfm.201102966 Chen, 2011, Nat. Mater., 10, 539, 10.1038/nmat3047 Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017 Hu, 2014, Science, 344, 1005, 10.1126/science.1251428 Bae, 2017, Chem. Soc. Rev., 46, 1933, 10.1039/C6CS00918B Pijpers, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 10056, 10.1073/pnas.1106545108 Wang, 2014, Chem. Soc. Rev., 43, 7469, 10.1039/C3CS60370A Chen, 2015, J. Am. Chem. Soc., 137, 9595, 10.1021/jacs.5b03536 Shaner, 2015, Energy Environ. Sci., 8, 203, 10.1039/C4EE03012E Yang, 2014, J. Am. Chem. Soc., 136, 6191, 10.1021/ja501513t Yang, 2016, Nat. Mater., 16, 335, 10.1038/nmat4794 Yu, 2017, Adv. Energy Mater., 7 Mei, 2014, J. Phys. Chem. Lett., 5, 3456, 10.1021/jz501872k Sun, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 3612, 10.1073/pnas.1423034112 Sun, 2015, J. Phys. Chem. Lett., 6, 592, 10.1021/jz5026195 Lichterman, 2014, Energy Environ. Sci., 7, 3334, 10.1039/C4EE01914H Seger, 2014, Energy Environ. Sci., 7, 2397, 10.1039/C4EE01335B Mei, 2015, J. Phys. Chem. C, 119, 10.1021/acs.jpcc.5b04407 Zhu, 2015, Nano Energy, 12, 347, 10.1016/j.nanoen.2015.01.001 Kenney, 2013, Science, 342, 836, 10.1126/science.1241327 Digdaya, 2017, Nat. Commun., 8, 15968, 10.1038/ncomms15968 Scheuermann, 2016, Nat. Mater., 15, 99, 10.1038/nmat4451 Zhou, 2015, Energy Environ. Sci., 8, 2644, 10.1039/C5EE01687H Zhou, 2016, Energy Environ. Sci., 9, 892, 10.1039/C5EE03655K Strandwitz, 2013, J. Phys. Chem. C, 117, 4931, 10.1021/jp311207x Hu, 2016, J. Phys. Chem. C, 120, 3117, 10.1021/acs.jpcc.5b09121 Lichterman, 2016, Catal. Today, 262, 11, 10.1016/j.cattod.2015.08.017 Lichterman, 2015, Energy Environ. Sci., 8, 2409, 10.1039/C5EE01014D Yao, 2016, J. Am. Chem. Soc., 138, 13664, 10.1021/jacs.6b07188 Moreno-Hernandez, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201801155 Ishikawa, 2004, J. Phys. Chem. B, 108, 11049, 10.1021/jp048802u Haydous, 2019, J. Phys. Chem. C, 123, 1059, 10.1021/acs.jpcc.8b09629 Urabe, 2014, Faraday Discuss., 176, 213, 10.1039/C4FD00122B Seo, 2018, Adv. Energy Mater., 8 Leroy, 2012, Chem. Commun., 48, 820, 10.1039/C1CC16112A Ueda, 2015, J. Am. Chem. Soc., 137, 2227, 10.1021/ja5131879 Huang, 2018, Appl. Catal. B, 226, 111, 10.1016/j.apcatb.2017.12.033 Zhou, 2018, J. Mater. Chem. A, 6, 7706, 10.1039/C8TA02233J Pichler, 2016, Appl. Surf. Sci., 369, 67, 10.1016/j.apsusc.2016.01.197 Wang, 2017, ACS Appl. Mater. Interfaces, 9, 30696, 10.1021/acsami.7b09021 Zhong, 2017, Angew. Chem., Int. Ed., 56, 4739, 10.1002/anie.201700117 Yokoyama, 2011, Thin Solid Films, 519, 2087, 10.1016/j.tsf.2010.10.055 Dang, 2012, J. Phys. Chem. C, 116, 19225, 10.1021/jp307369z Cong, 2012, Chem. Mater., 24, 579, 10.1021/cm203269n Fang, 2018, Sci. Bull., 63, 1404, 10.1016/j.scib.2018.10.005 Hajibabaei, 2016, Chem. Sci., 7, 6760, 10.1039/C6SC02116F Higashi, 2019, Angew. Chem., Int. Ed., 58, 2300, 10.1002/anie.201812081 Higashi, 2011, Energy Environ. Sci., 4, 4138, 10.1039/c1ee01878g Wang, 2016, Chem. Sci., 7, 4391, 10.1039/C6SC00245E Akiyama, 2016, Small, 12, 5468, 10.1002/smll.201601929 Feng, 2016, Adv. Mater. Technol., 1, 10.1002/admt.201600119 Feng, 2010, Nano Lett., 10, 948, 10.1021/nl903886e Wang, 2015, Chem. Mater., 27, 2360, 10.1021/cm503887t Zhen, 2013, Chem. Commun., 49, 3019, 10.1039/c3cc40760h Hou, 2013, Energy Environ. Sci., 6, 3322, 10.1039/c3ee41854e Shi, 2018, Appl. Catal. B, 237, 665, 10.1016/j.apcatb.2018.06.037 Feng, 2014, Adv. Funct. Mater., 24, 3535, 10.1002/adfm.201304046 Zhen, 2016, J. Mater. Chem. A, 4, 2783, 10.1039/C5TA07057K Wang, 2017, J. Phys. Chem. C, 121, 6864, 10.1021/acs.jpcc.7b01279 Wang, 2015, Phys. Chem. Chem. Phys., 17, 19631, 10.1039/C5CP02606G Wang, 2014, Phys. Chem. Chem. Phys., 16, 15375, 10.1039/C4CP00120F Wang, 2014, J. Catal., 309, 291, 10.1016/j.jcat.2013.10.014 Wang, 2014, RSC Adv., 4, 55615, 10.1039/C4RA11053F Chen, 2011, Appl. Phys. Lett., 99 Feng, 2019, Adv. Funct. Mater., 29 Ziani, 2015, Phys. Chem. Chem. Phys., 17, 2670, 10.1039/C4CP05616G Feng, 2014, Chem.–Eur. J., 20, 16384, 10.1002/chem.201402760 Kado, 2012, Chem. Commun., 48, 8685, 10.1039/c2cc33822j Pei, 2018, ACS Appl. Energy Mater., 1, 4150, 10.1021/acsaem.8b00809 Li, 2013, Nat. Commun., 4, 2566, 10.1038/ncomms3566 Seo, 2015, J. Am. Chem. Soc., 137, 12780, 10.1021/jacs.5b08329 Li, 2013, Angew. Chem., Int. Ed., 52, 11016, 10.1002/anie.201305350 Kim, 2013, J. Am. Chem. Soc., 135, 5375, 10.1021/ja308723w Zhong, 2016, Adv. Funct. Mater., 26, 7156, 10.1002/adfm.201603021 Higashi, 2013, J. Am. Chem. Soc., 135, 10238, 10.1021/ja404030x Liu, 2016, Energy Environ. Sci., 9, 1327, 10.1039/C5EE03802B He, 2016, Chem, 1, 640, 10.1016/j.chempr.2016.09.006 Lin, 2014, Nat. Mater., 13, 81, 10.1038/nmat3811 Kast, 2014, ACS Appl. Mater. Interfaces, 6, 22830, 10.1021/am506999p Choi, 2014, J. Mater. Chem. A, 2, 2928, 10.1039/c3ta14443g Fan, 2017, J. Mater. Chem. A, 5, 18744, 10.1039/C7TA04986B Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059 Prabhakar, 2017, J. Mater. Chem. A, 5, 23139, 10.1039/C7TA08993G Seger, 2013, J. Am. Chem. Soc., 135, 1057, 10.1021/ja309523t Seger, 2013, J. Mater. Chem. A, 1, 15089, 10.1039/c3ta12309j Bae, 2016, Sol. Energy Mater. Sol. Cells, 144, 758, 10.1016/j.solmat.2015.10.020 Cheng, 2018, ACS Energy Lett., 3, 1795, 10.1021/acsenergylett.8b00920 Paracchino, 2012, Energy Environ. Sci., 5, 8673, 10.1039/c2ee22063f Seger, 2013, RSC Adv., 3, 25902, 10.1039/c3ra45966g Ji, 2015, Nat. Nanotechnol., 10, 84, 10.1038/nnano.2014.277 Naghavi, 2010, Prog. Photovoltaics, 18, 411, 10.1002/pip.955 Merdes, 2013, Prog. Photovoltaics, 21, 88, 10.1002/pip.2165 Cheng, 2018, Adv. Sci., 5, 10.1002/advs.201700362 Gu, 2016, Nat. Mater., 15, 456, 10.1038/nmat4511 Fan, 2015, Nano Lett., 15, 2721, 10.1021/acs.nanolett.5b00535 Marsen, 2008, Sol. Energy Mater. Sol. Cells, 92, 1054, 10.1016/j.solmat.2008.03.009 Luo, 2015, Nano Lett., 15, 1395, 10.1021/nl504746b Guan, 2015, J. Mater. Chem. A, 3, 7840, 10.1039/C5TA01259G Kaneko, 2016, Adv. Funct. Mater., 26, 4570, 10.1002/adfm.201600615 Moriya, 2013, J. Am. Chem. Soc., 135, 3733, 10.1021/ja312653y Shin, 2016, J. Phys. Chem. Lett., 7, 4554, 10.1021/acs.jpclett.6b02010 Wen, 2017, Nano Energy, 41, 18, 10.1016/j.nanoen.2017.09.006 Xiao, 2013, J. Appl. Phys., 114 Ge, 2017, Chem. Mater., 29, 916, 10.1021/acs.chemmater.6b03347 Gershon, 2016, Adv. Energy Mater., 6 Guchhait, 2016, ACS Energy Lett., 1, 1256, 10.1021/acsenergylett.6b00509 Chen, 2016, Nanophotonics, 5, 524, 10.1515/nanoph-2016-0027 Ge, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201601803 Kim, 2012, Energy Environ. Sci., 5, 6368, 10.1039/C1EE02280F Jiang, 2015, J. Am. Chem. Soc., 137, 13691, 10.1021/jacs.5b09015 Young, 2017, Nat. Energy, 2, 17028, 10.1038/nenergy.2017.28 Boettcher, 2011, J. Am. Chem. Soc., 133, 1216, 10.1021/ja108801m Seo, 2015, J. Am. Chem. Soc., 137, 3173, 10.1021/ja5126287 Yao, 2018, Adv. Energy Mater., 8 Lin, 2013, Nano Lett., 13, 5615, 10.1021/nl403265k Esposito, 2013, Nat. Mater., 12, 562, 10.1038/nmat3626 Ji, 2017, Nat. Mater., 16, 127, 10.1038/nmat4801 McKone, 2013, J. Am. Chem. Soc., 135, 223, 10.1021/ja308581g Yu, 2015, Nat. Commun., 6, 7596, 10.1038/ncomms8596 Berglund, 2014, J. Am. Chem. Soc., 136, 1535, 10.1021/ja411604k Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a Saadi, 2014, J. Phys. Chem. C, 118, 29294, 10.1021/jp5054452 Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764 Labrador, 2016, Nano Lett., 16, 6452, 10.1021/acs.nanolett.6b02909 Azarpira, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201402148 Pang, 2018, Chem.–Asian J., 13, 127, 10.1002/asia.201701596 Kumar, 2012, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759 White, 2015, Chem. Rev., 115, 12888, 10.1021/acs.chemrev.5b00370 Zhang, 2018, Sci. China Mater., 61, 771, 10.1007/s40843-017-9151-y Schweitzer, 2010 Hori, 2008, 89, 10.1007/978-0-387-49489-0_3 Jitaru, 1997, J. Appl. Electrochem., 27, 875, 10.1023/A:1018441316386 Kuhl, 2012, Energy Environ. Sci., 5, 7050, 10.1039/c2ee21234j Hong, 2013, Anal. Methods, 5, 1086, 10.1039/c2ay26270c Hara, 1995, J. Electroanal. Chem., 391, 141, 10.1016/0022-0728(95)03935-A Morales-Guio, 2018, Nat. Catal., 1, 764, 10.1038/s41929-018-0139-9 Duyar, 2018, Angew. Chem., Int. Ed., 57, 15045, 10.1002/anie.201806583 Schreier, 2017, Nat. Energy, 2, 17087, 10.1038/nenergy.2017.87 Zhou, 2016, ACS Energy Lett., 1, 764, 10.1021/acsenergylett.6b00317 Nath, 2016, Nano Energy, 25, 51, 10.1016/j.nanoen.2016.04.025 Yang, 2019, ChemSusChem, 12, 1889, 10.1002/cssc.201801554 Qiao, 2014, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G Nandjou, 2019, ChemSusChem, 12, 1984, 10.1002/cssc.201802558 Hinogami, 1998, J. Phys. Chem. B, 102, 974, 10.1021/jp972663h Liu, 1992, J. Electroanal. Chem., 324, 191, 10.1016/0022-0728(92)80050-E Rao, 2018, J. Mater. Chem. A, 6, 1736, 10.1039/C7TA09672K Chu, 2016, Angew. Chem. Int. Ed., 55, 14262, 10.1002/anie.201606424 Chu, 2018, J. Am. Chem. Soc., 140, 7869, 10.1021/jacs.8b03067 Li, 2019, Energy Environ. Sci., 12, 923, 10.1039/C8EE02768D Gurudayal, 2019, Energy Environ. Sci., 12, 1068, 10.1039/C8EE03547D Halmann, 1978, Nature, 275, 115, 10.1038/275115a0 Barton, 2008, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327 Kronawitter, 2015, J. Phys. Chem. C, 119, 17762, 10.1021/acs.jpcc.5b05361 Jang, 2016, ACS Nano, 10, 6980, 10.1021/acsnano.6b02965 Arai, 2013, Energy Environ. Sci., 6, 1274, 10.1039/c3ee24317f Lichterman, 2013, J. Phys. Chem. Lett., 4, 4188, 10.1021/jz4022415 Hill, 2015, Nat. Mater., 14, 1150, 10.1038/nmat4408 Yang, 2015, Nano Lett., 15, 7051, 10.1021/acs.nanolett.5b03114 Toma, 2016, Nat. Commun., 7, 12012, 10.1038/ncomms12012 Yu, 2018, Nano Lett., 18, 5335, 10.1021/acs.nanolett.8b02559 Lutterman, 2009, J. Am. Chem. Soc., 131, 3838, 10.1021/ja900023k Seabold, 2012, J. Am. Chem. Soc., 134, 2186, 10.1021/ja209001d Voiry, 2016, Nat. Mater., 15, 1003, 10.1038/nmat4660 Gamelin, 2012, Nat. Chem., 4, 965, 10.1038/nchem.1514 Zhao, 2015, Nano Lett., 15, 2517, 10.1021/acs.nanolett.5b00086 Yu, 2017, Nat. Energy, 2, 17045, 10.1038/nenergy.2017.45 Service, 2018, Science, 361, 120, 10.1126/science.361.6398.120 Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105 Li, 2017, Acc. Chem. Res., 50, 112, 10.1021/acs.accounts.6b00523 Mei, 2017, Adv. Sustainable Syst., 1, 10.1002/adsu.201600035 Sayama, 2018, ACS Energy Lett., 3, 1093, 10.1021/acsenergylett.8b00318 Mi, 2012, Energy Environ. Sci., 5, 5694, 10.1039/c2ee02929d Solarska, 2012, Nanoscale, 4, 1553, 10.1039/c2nr11573e Hill, 2012, J. Phys. Chem. C, 116, 7612, 10.1021/jp209909b Fuku, 2016, Chem. Commun., 52, 5406, 10.1039/C6CC01605G Cha, 2015, Nat. Chem., 7, 328, 10.1038/nchem.2194 Luo, 2008, Appl. Phys. Lett., 92 Li, 2011, Appl. Phys. Lett., 99 Wu, 2018, Adv. Mater., 30 Park, 2016, Nat. Energy, 2, 16185, 10.1038/nenergy.2016.185 Zong, 2014, Energy Environ. Sci., 7, 3347, 10.1039/C4EE01503G Cui, 2015, ACS Appl. Mater. Interfaces, 7, 25601, 10.1021/acsami.5b01393 Fan, 2016, ACS Appl. Mater. Interfaces, 8, 13857, 10.1021/acsami.6b00809 Fu, 2018, Appl. Phys. Lett., 112 Yang, 2015, Nano Lett., 15, 7574, 10.1021/acs.nanolett.5b03988 Fang, 2019, Research 2019, 9282674