Non-noble metal-based bifunctional electrocatalysts for hydrogen production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ibrahim KB, Tsai MC, Chala SA, Berihun MK, Kahsay AW, Berhe TA, Su WN, Hwang BJ. A review of transition metal-based bifunctional oxygen electrocatalysts. J Chin Chem Soc. 2019;66(8):829.
Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem. 2020;2(2):100027.
Liu W, Lustig WP, Li J. Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem. 2019;1(2):100008.
Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544:80.
Liu G, Sheng Y, Ager JW, Kraft M, Xu R. Researc advances towards large-scale solar hydrogen production from water. EnergyChem. 2019;1(2):100014.
Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A. 2016;4(45):17587.
Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680.
Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd. 2020;819:153346.
Xie L, Qu F, Liu Z, Ren X, Hao S, Ge R, Du G, Asiri AM, Sun X, Chen L. In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. J Mater Chem A. 2017;5(17):7806.
Guo X, Zheng S, Luo Y, Pang H. Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem Eng Sci. 2020;401:126005.
You B, Liu X, Jiang N, Sun Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc. 2016;138(41):13639.
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Solar water splitting cells. Chem Rev. 2010;110(11):6446.
Moni P, Hyun S, Vignesh A, Shanmugam S. Chrysanthemum flower-like NiCo2O4–nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries. Chem Commun. 2017;53(55):7836.
Wang H, Lee HW, Deng Y, Lu Z, Hsu PC, Liu Y, Lin D, Cui Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun. 2015;6:7261.
Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, F. G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol. 2014;9:69.
Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun. 2014;5:4695.
Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science. 2013;340(6128):60.
Elakkiya R, Ramkumar R, Maduraiveeran G. Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting. Mater Res Bull. 2019;116:98.
Tahir M, Mahmood N, Zhang X, Mahmood T, Butt FK, Aslam I, Tanveer M, Idrees F, Khalid S, Shakir I, Yan Y, Zou J, Cao C, Hou Y. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015;8:3725.
Zhang X, Dong CL, Wang Y, Chen J, Arul KT, Diao Z, Fu Y, Li M, Shen S. Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting. ACS Appl Mater Interfaces. 2020;12(51):57038.
Li X, Xiao L, Zhou L, Xu Q, Weng J, Xu J, Liu B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew Chem Int Ed. 2020;59(47):21106.
Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.
Li H, Tan Y, Liu P, Guo C, Luo M, Han J, Lin T, Huang F, Chen M. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv Mater. 2016;28(40):8945.
Lin J, Peng Z, Wang G, Zakhidov D, Larios E, Yacaman MJ, Tour JM. Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Adv Energy Mater. 2014;4(10):1301875.
Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.
Tang Q, Jiang D. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016;6(8):4953.
Najafi L, Bellani S, Oropesa-Nuñez R, Martín-García B, Prato M, Mazánek V, Debellis D, Lauciello S, Brescia R, Sofer Z, Bonaccorso F. Niobium disulphide (NbS2)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. J Mater Chem A. 2019;7(44):25593.
Wang M, Zhang L, Huang M, Zhang Q, Zhao X, He Y, Lin S, Pan J, Zhu H. One-step synthesis of a hierarchical self-supported WS2 film for efficient electrocatalytic hydrogen evolution. J Mater Chem A. 2019;7(39):22405.
Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J, Chen TP. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun. 2016;7:10672.
Wei S, Cui X, Xu Y, Shang B, Zhang Q, Gu L, Fan X, Zheng L, Hou C, Huang H, Wen S, Zheng W. Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 2019;4(1):368.
Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6702.
Xie C, Yan D, Chen W, Zou Y, Chen R, Zang S, Wang Y, Yao X, Wang S. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today. 2019;31:47.
Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594.
Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Young DV, Lang JP. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting. Inorg Chem. 2019;58(16):11202.
Gong Y, Zhi Y, Lin Y, Zhou T, Li J, Jiao F, Wang W. Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting. Dalton Trans. 2019;48(20):6718.
Stern LA, Feng L, Song F, Hu X. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ Sci. 2015;8(8):2347.
Huang Y, Song X, Deng J, Zha C, Huang W, Wu Y, Li Y. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl Catal B. 2019;245:656.
Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KCW, Yamauchi Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater. 2017;29(12):1604898.
Read CG, Callejas JF, Holder CF, Schaak RE. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl Mater Interfaces. 2016;8(20):12798.
Mushtaq N, Qiao C, Tabassum H, Naveed M, Tahir M, Zhu Y, Naeem M, Younasa W, Cao C. Preparation of a bifunctional ultrathin nickel phosphide nanosheet electrocatalyst for full water splitting. Sustain Energy Fuels. 2020;4(10):5294.
Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard WA, Chen S, Ren Z. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun. 2018;9:2551.
Kang Q, Li M, Shi J, Lu Q, Gao F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl Mater Interfaces. 2020;12(17):19447.
Ham DJ, Lee JS. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energy Environ Sci. 2009;2(4):873.
Fang Y, Xue Y, Hui L, Yu H, Liu Y, Xing C, Lu F, He F, Liu H, Li Y. In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting. Nano Energy. 2019;59:591.
Dincă M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA. 2010;107(23):10337.
Li K, Zhang J, Wu R, Yu Y, Zhang B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci. 2016;3(6):1500426.
Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl Mater Interfaces. 2021;13(7):8306.
Kou Z, Zhang L, Ma Y, Liu X, Zang W, Zhang J, Huang S, Du Y, Cheetham AK, Wang J. 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl Catal B. 2019;243:678.
Xing J, Li Y, Guo S, Jin T, Li H, Wang Y, Jiao L. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim Acta. 2019;298:305.
Xu N, Cao G, Chen Z, Kang Q, Dai H, Wang P. Cobalt nickel boride as an active electrocatalyst for water splitting. J Mater Chem A. 2017;5(24):12379.
Chen X, Yu Z, Wei L, Zhou Z, Zhai S, Chen J, Wang Y, Huang Q, Karahan HE, Liao X, Chen Y. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(2):764.
You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed. 2016;55(34):9913.
Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1:0003.
Take T, Tsurutani K, Umeda M. Hydrogen production by methanol–water solution electrolysis. J Power Sources. 2007;164(1):9.
Chen YX, Lavacchi A, Miller HA, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun. 2014;5:4036.
Zheng J, Chen X, Zhong X, Li S, Liu T, Zhuang G, Li X, Deng S, Mei D, Wang GJ. Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv Funct Mater. 2017;27(46):1704169.
Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew Chem Int Ed. 2017;56(3):842.
Liu Y, Zhang J, Li Y, Qian Q, Li Z, Zhu Y, Zhang G. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat Commun. 2020;11:1853.
Wen H, Gan LY, Dai HB, Wen XP, Wu LS, Wu H, Wang P. In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl Catal B. 2019;241:292.
Liu X, He J, Zhao S, Liu Y, Zhao Z, Luo J, Hu G, Sun X, Ding Y. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat Commun. 2018;9:4365.
Cheung KC, Wong WL, Ma DL, Lai TS, Wong KY. Transition metal complexes as electrocatalysts—development and applications in electro-oxidation reactions. Coord Chem Rev. 2007;251(17–20):2367.
Lu Z, Sun M, Xu T, Li Y, Xu W, Chang Z, Ding Y, Sun X, Jiang L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv Mater. 2015;27(14):2361.
Wu LS, Wen XP, Wen H, Dai HB, Wang P. Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation. J Power Sources. 2019;412:71.
Yang J, Wang X, Li B, Ma L, Shi L, Xiong Y, Xu H. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv Funct Mater. 2017;27(17):1606497.
Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed. 2016;55(42):13296.
Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv Mat. 2017;29(47):1704681.
Yang Y, Zhang H, Lin Z-H, Liu Y, Chen J, Lin Z, Zhou YS, Wong CP, Wang ZL. A hybrid energy cell for self-powered water splitting. Energy Environ Sci. 2013;6(8):2429.
Tang W, Han Y, Han CB, Gao CZ, Cao X, Wang ZL. Self-powered water splitting using flowing kinetic energy. Adv Mat. 2015;27(2):272.
Boggs BK, King RL, Botte GG. Urea electrolysis: direct hydrogen production from urine. Commun Chem. 2009;32:4859.
Liang Y, Liu Q, Asiri AM, Sun X. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim Acta. 2015;153:456.
Zhang JY, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, Xia BY. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy. 2019;60:894.
Wu F, Ou G, Yang J, Li H, Gao Y, Chen F, Wang Y, Shi Y. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Commun Chem. 2019;55(46):6555.
Li Q, Li X, Gu J, Li Y, Tian Z, Pang H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021;14:1405.
Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block. Chem Rev. 2011;111(2):397.
Zhang Z, Deng K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal. 2015;5(11):6529.