Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation

Catalysis Science and Technology - Tập 5 Số 1 - Trang 525-530
Jun Li1,2,3,4,5, Qi‐Long Zhu3,6,5, Qiang Xü1,2,3,4,5
1Graduate School of Engineering
2Graduate School of Engineering, Kobe University,Nada Ku, Kobe,Japan
3Ikeda
4Kobe University
5National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
6Japan

Tóm tắt

Non-noble bimetallic CuCo alloy nanoparticles were successfully encapsulated in the pores of MIL-101 without aggregation on the external surfaces of the host framework, which exhibit excellent catalytic activity for hydrolytic dehydrogenation of ammonia borane.

Từ khóa


Tài liệu tham khảo

Edwards, 2008, Energy Policy, 36, 4356, 10.1016/j.enpol.2008.09.036

Hamilton, 2009, Chem. Soc. Rev., 38, 279, 10.1039/B800312M

Chen, 2012, Chem. Soc. Rev., 41, 5654, 10.1039/c2cs35019j

Schlapbach, 2001, Nature, 414, 353, 10.1038/35104634

Keaton, 2007, J. Am. Chem. Soc., 129, 1844, 10.1021/ja066860i

Huang, 2012, Energy Environ. Sci., 5, 9257, 10.1039/c2ee23039a

Zhu, 2014, Chem. Sci., 5, 195, 10.1039/C3SC52448E

Gutowska, 2005, Angew. Chem., Int. Ed., 44, 3578, 10.1002/anie.200462602

Chandra, 2006, J. Power Sources, 156, 190, 10.1016/j.jpowsour.2005.05.043

Xu, 2007, J. Alloys Compd., 446, 729, 10.1016/j.jallcom.2007.01.040

Kim, 2010, J. Am. Chem. Soc., 132, 9954, 10.1021/ja101685u

Sanyal, 2011, ChemSusChem, 4, 1731, 10.1002/cssc.201100318

Kim, 2012, Chem. Commun., 48, 2021, 10.1039/c2cc15931g

Yadav, 2012, Energy Environ. Sci., 5, 9698, 10.1039/c2ee22937d

Jiang, 2011, Catal. Today, 170, 56, 10.1016/j.cattod.2010.09.019

Xu, 2006, J. Power Sources, 163, 364, 10.1016/j.jpowsour.2006.09.043

Mohajeri, 2007, J. Power Sources, 167, 482, 10.1016/j.jpowsour.2007.02.059

Basu, 2009, J. Power Sources, 188, 238, 10.1016/j.jpowsour.2008.11.085

Durap, 2009, Int. J. Hydrogen Energy, 34, 7223, 10.1016/j.ijhydene.2009.06.074

Karahan, 2012, Chem. Commun., 48, 1180, 10.1039/C1CC15864C

Zhong, 2012, Chem. Commun., 48, 11945, 10.1039/c2cc36407g

Aijaz, 2012, J. Am. Chem. Soc., 134, 13926, 10.1021/ja3043905

Yan, 2008, Angew. Chem., Int. Ed., 47, 2287, 10.1002/anie.200704943

Umegaki, 2009, Int. J. Hydrogen Energy, 34, 3816, 10.1016/j.ijhydene.2009.03.003

Metin, 2010, J. Am. Chem. Soc., 132, 1468, 10.1021/ja909243z

Li, 2012, Angew. Chem., Int. Ed., 51, 6753, 10.1002/anie.201202055

Yan, 2010, J. Power Sources, 195, 1091, 10.1016/j.jpowsour.2009.08.067

Umegaki, 2010, J. Power Sources, 195, 8209, 10.1016/j.jpowsour.2010.07.079

Zhou, 2012, J. Mater. Chem., 22, 13506, 10.1039/c2jm31000g

Aranishi, 2013, ChemCatChem, 5, 2248, 10.1002/cctc.201300143

Yan, 2009, J. Am. Chem. Soc., 131, 2778, 10.1021/ja808830a

Jiang, 2011, Chem. Commun., 47, 10999, 10.1039/c1cc13989d

Patel, 2008, J. Phys. Chem. C, 11, 6968, 10.1021/jp7104192

Patel, 2010, Appl. Catal., B, 95, 137, 10.1016/j.apcatb.2009.12.020

Eddaoudi, 2002, Science, 295, 469, 10.1126/science.1067208

Kitagawa, 2004, Angew. Chem., Int. Ed., 43, 2334, 10.1002/anie.200300610

Zhang, 2009, Chem. Soc. Rev., 38, 2385, 10.1039/b900317g

Férey, 2009, Chem. Soc. Rev., 38, 1380, 10.1039/b804302g

Chen, 2010, Acc. Chem. Res., 43, 1115, 10.1021/ar100023y

Jiang, 2011, Chem. Commun., 47, 3351, 10.1039/c0cc05419d

Zhao, 2011, Acc. Chem. Res., 44, 123, 10.1021/ar100112y

Henschel, 2008, Chem. Commun., 4192, 10.1039/b718371b

Proch, 2008, Chem. – Eur. J., 14, 8204, 10.1002/chem.200801043

Jiang, 2011, J. Am. Chem. Soc., 133, 1304, 10.1021/ja1099006

Gu, 2011, J. Am. Chem. Soc., 133, 11822, 10.1021/ja200122f

Lu, 2012, Nat. Chem., 4, 310, 10.1038/nchem.1272

Dhakshinamoorthy, 2012, Chem. Soc. Rev., 41, 5262, 10.1039/c2cs35047e

Wang, 2012, J. Am. Chem. Soc., 134, 7211, 10.1021/ja300539p

Li, 2013, Energy Environ. Sci., 6, 1656, 10.1039/c3ee40507a

Zhu, 2014, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A

Hermes, 2005, Angew. Chem., Int. Ed., 44, 6237, 10.1002/anie.200462515

Müller, 2008, J. Mater. Chem., 18, 5274, 10.1039/b810989c

Schröder, 2009, Eur. J. Inorg. Chem., 3131, 10.1002/ejic.200900138

Park, 2010, Chem. Commun., 46, 3086, 10.1039/c000775g

Meilikhov, 2010, Eur. J. Inorg. Chem., 3701, 10.1002/ejic.201000473

Hermannsdörfer, 2012, Angew. Chem., Int. Ed., 51, 11473, 10.1002/anie.201205078

Moon, 2013, Chem. Soc. Rev., 42, 1807, 10.1039/C2CS35320B

Aijaz, 2014, J. Phys. Chem. Lett., 5, 1400, 10.1021/jz5004044

Zhu, 2013, J. Am. Chem. Soc., 135, 10210, 10.1021/ja403330m

Li, 2014, Chem. Commun., 50, 5899, 10.1039/c4cc00785a

Férey, 2005, Science, 309, 2040, 10.1126/science.1116275

C. D. Wagner , W. N.Riggs, L. E.Davis and J. F.Moulder, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Use In X-Ray Photoelectron Spectroscopy, ed. G. E. Muilenberg, Physical Electronics Division Perkin-Elmer Corp., Minnesota, 1978

Jiang, 2011, J. Mater. Chem., 21, 13705, 10.1039/c1jm12020d

Singh, 2013, ChemCatChem, 5, 652, 10.1002/cctc.201200591

Hammer, 2000, Adv. Catal., 45, 71, 10.1016/S0360-0564(02)45013-4

Ferrando, 2008, Chem. Rev., 108, 845, 10.1021/cr040090g

Li, 2012, Chem. Commun., 48, 3173, 10.1039/c2cc17302f