Định lượng Einstein không tự nhiên trên nhóm Lie đơn giản compact $$F_4$$

Annals of Global Analysis and Geometry - Tập 46 - Trang 103-115 - 2014
Zhiqi Chen1, Ke Liang1
1School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People’s Republic of China

Tóm tắt

Dựa trên lý thuyết đại diện và nghiên cứu về các phép tự đối của các nhóm Lie đơn giản compact, chúng tôi cho thấy rằng nhóm $$F_4$$ thừa nhận các métriques Einstein không tự nhiên.

Từ khóa

#Einstein metrics #nhóm Lie đơn giản #tự đối #lý thuyết đại diện

Tài liệu tham khảo

Alekseevsky, D., Kimel’fel’d, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funct. Anal. Appl. 9, 97–102 (1975) Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reducitive. Geom. Dedicata 160, 261–285 (2012) Berger, M.: Les espaces symétriques noncompacts. Ann. Sci. École Norm. Sup. 74(3), 85–177 (1957) Besse, A.: Einstein manifolds. Ergeb. Math. 10, (1987). Springer, Berlin Böhm, C.: Homogeneous Einstein metrics and simplicial complexes. J. Differ. Geom. 67, 79–165 (2004) Böhm, C., Kerr, M.M.: Low-dimensional homogeneous Einstein manifolds. Trans. Am. Math. Soc. 358(4), 1455–1468 (2006) Böhm, C., Wang, M., Ziller, W.: A variational approach for homogeneous Einstein metrics. Geom. Funct. Anal. 14, 681–733 (2004) Chen, Z.Q., Liang, K.: Classification of analytic involution pairs of Lie groups (in Chinese). Chin. Ann. Math. Ser. A 26(5), 695–708 (2005). Translation in Chin. J. Contemp. Math. 26(4), 411–424 (2006) Chuan, M.K., Huang, J.S.: Double Vogan diagrams and semisimple symmetric spaces. Trans. Am. Math. Soc. 362, 1721–1750 (2010) D’Atri, J.E., Ziller, W..: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 215 (1979) Gibbons, G.W., Lü, H., Pope, C.N.: Einstein metrics on group manifolds and cosets. J. Geom. Phys. 61(5), 947–960 (2011) Heber, J.: Noncompact homogeneous Einstein spaces. Invent. math. 133, 279–352 (1998) Jensen, G.R.: Einstein metrics on principal fibre bundles. J. Differ. Geom. 8, 599–614 (1973) Lauret, J.: Einstein solvmanifolds are standard. Ann. Math. (2) 172(3), 1859–1877 (2010) Mori, K..: Left invariant Einstein metrics on \({\rm SU}(n)\) that are not naturally reductive. Master thesis (in Japanese), Osaka University 1994, English translation Osaka University RPM 96-10 (preprint series) (1996) Mujtaba, A.H.: Homogeneous Einstein metrics on \({\rm SU}(n)\). J. Geom. Phys. 62(5), 976–980 (2012) Nikonorov, YuG, Rodionov, E.D., Slavskii, V.V.: Geometry of homogeneous Riemannian manifolds. J. Math. Sci. 146(6), 6313–6390 (2007) Pope, C.N..: Homogeneous Einstein metrics on \({\rm SO}(n)\). arXiv:1001.2776 (2010) Sagle, A.: Some homogeneous Einstein manifolds. Nagoya Math. J. 39, 81–106 (1970) Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986) Yan, Z.D.: Real Semisimple Lie Algebras (in Chinese). Nankai University Press, Tianjin (1998)