Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định lượng Einstein không tự nhiên trên nhóm Lie đơn giản compact $$F_4$$
Tóm tắt
Dựa trên lý thuyết đại diện và nghiên cứu về các phép tự đối của các nhóm Lie đơn giản compact, chúng tôi cho thấy rằng nhóm $$F_4$$ thừa nhận các métriques Einstein không tự nhiên.
Từ khóa
#Einstein metrics #nhóm Lie đơn giản #tự đối #lý thuyết đại diệnTài liệu tham khảo
Alekseevsky, D., Kimel’fel’d, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funct. Anal. Appl. 9, 97–102 (1975)
Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reducitive. Geom. Dedicata 160, 261–285 (2012)
Berger, M.: Les espaces symétriques noncompacts. Ann. Sci. École Norm. Sup. 74(3), 85–177 (1957)
Besse, A.: Einstein manifolds. Ergeb. Math. 10, (1987). Springer, Berlin
Böhm, C.: Homogeneous Einstein metrics and simplicial complexes. J. Differ. Geom. 67, 79–165 (2004)
Böhm, C., Kerr, M.M.: Low-dimensional homogeneous Einstein manifolds. Trans. Am. Math. Soc. 358(4), 1455–1468 (2006)
Böhm, C., Wang, M., Ziller, W.: A variational approach for homogeneous Einstein metrics. Geom. Funct. Anal. 14, 681–733 (2004)
Chen, Z.Q., Liang, K.: Classification of analytic involution pairs of Lie groups (in Chinese). Chin. Ann. Math. Ser. A 26(5), 695–708 (2005). Translation in Chin. J. Contemp. Math. 26(4), 411–424 (2006)
Chuan, M.K., Huang, J.S.: Double Vogan diagrams and semisimple symmetric spaces. Trans. Am. Math. Soc. 362, 1721–1750 (2010)
D’Atri, J.E., Ziller, W..: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 215 (1979)
Gibbons, G.W., Lü, H., Pope, C.N.: Einstein metrics on group manifolds and cosets. J. Geom. Phys. 61(5), 947–960 (2011)
Heber, J.: Noncompact homogeneous Einstein spaces. Invent. math. 133, 279–352 (1998)
Jensen, G.R.: Einstein metrics on principal fibre bundles. J. Differ. Geom. 8, 599–614 (1973)
Lauret, J.: Einstein solvmanifolds are standard. Ann. Math. (2) 172(3), 1859–1877 (2010)
Mori, K..: Left invariant Einstein metrics on \({\rm SU}(n)\) that are not naturally reductive. Master thesis (in Japanese), Osaka University 1994, English translation Osaka University RPM 96-10 (preprint series) (1996)
Mujtaba, A.H.: Homogeneous Einstein metrics on \({\rm SU}(n)\). J. Geom. Phys. 62(5), 976–980 (2012)
Nikonorov, YuG, Rodionov, E.D., Slavskii, V.V.: Geometry of homogeneous Riemannian manifolds. J. Math. Sci. 146(6), 6313–6390 (2007)
Pope, C.N..: Homogeneous Einstein metrics on \({\rm SO}(n)\). arXiv:1001.2776 (2010)
Sagle, A.: Some homogeneous Einstein manifolds. Nagoya Math. J. 39, 81–106 (1970)
Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)
Yan, Z.D.: Real Semisimple Lie Algebras (in Chinese). Nankai University Press, Tianjin (1998)