Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect

Aerospace Science and Technology - Tập 92 - Trang 269-279 - 2019
Wei He1,2, José Miguel Pérez3, Peng Yu2, Larry K.B. Li1
1The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
2Southern University of Science and Technology, Shenzhen, China
3Universidad Politécnica de Madrid, Madrid, Spain

Tài liệu tham khảo

Bewley, 1998, Optimal and robust control and estimation of linear paths to transition, J. Fluid Mech., 365, 305, 10.1017/S0022112098001281 Åkervik, 2007, Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes, J. Fluid Mech., 579, 305, 10.1017/S0022112007005496 Henningson, 1993, A mechanism for bypass transition from localized disturbances in wall-bounded shear flows, J. Fluid Mech., 250, 169, 10.1017/S0022112093001429 Reddy, 1993, Energy growth in viscous channel flows, J. Fluid Mech., 252, 209, 10.1017/S0022112093003738 Trefethen, 1993, Hydrodynamic stability without eigenvalues, Science, 261, 578, 10.1126/science.261.5121.578 Schmid, 2007, Nonmodal stability theory, Annu. Rev. Fluid Mech., 39, 129, 10.1146/annurev.fluid.38.050304.092139 Schmid, 2001 Luchini, 2000, Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations, J. Fluid Mech., 404, 289, 10.1017/S0022112099007259 Cherubini, 2010, The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble, Phys. Fluids, 22, 10.1063/1.3276903 Marquet, 2008, Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubbles in a global framework, J. Fluid Mech., 605, 429, 10.1017/S0022112008000323 Blackburn, 2008, Convective instability and transient growth in flow over a backward-facing step, J. Fluid Mech., 603, 271, 10.1017/S0022112008001109 Abdessemed, 2009, Transient growth analysis of the flow past a circular cylinder, Phys. Fluids, 21, 10.1063/1.3112738 Abdessemed, 2009, Linear instability analysis of low pressure turbine flows, J. Fluid Mech., 628, 57, 10.1017/S0022112009006272 Sharma, 2011, Transient growth mechanisms of low Reynolds number flow over a low-pressure turbine blade, Theor. Comput. Fluid Dyn., 25, 19, 10.1007/s00162-010-0183-9 Rocco, 2015, Floquet and transient growth stability analysis of a flow through a compressor passage, Aerosp. Sci. Technol., 44, 116, 10.1016/j.ast.2015.02.004 Loh, 2014, Transient growth in an airfoil separation bubble, 8 Gioria, 2015, On global linear instability mechanisms of flow around airfoils at low Reynolds number and high angle of attack, Proc. IUTAM, 14, 88, 10.1016/j.piutam.2015.03.027 He, 2017, Linear instability of low Reynolds number massively separated flow around three NACA airfoils, J. Fluid Mech., 811, 701, 10.1017/jfm.2016.778 He, 2018, Ground effects on the stability of separated flow around a NACA 4415 airfoil at low Reynolds numbers, Aerosp. Sci. Technol., 72, 63, 10.1016/j.ast.2017.10.039 He, 2019, Stability of low-Reynolds-number separated flow around an airfoil near a wavy ground, AIAA J., 57, 29, 10.2514/1.J057544 Theofilis, 2003, Advances in global linear instability of nonparallel and three-dimensional flows, Prog. Aerosp. Sci., 39, 249, 10.1016/S0376-0421(02)00030-1 Theofilis, 2011, Global linear instability, Annu. Rev. Fluid Mech., 43, 319, 10.1146/annurev-fluid-122109-160705 Barkley, 2008, Direct optimal growth analysis for timesteppers, Int. J. Numer. Methods Fluids, 57, 1435, 10.1002/fld.1824 Cantwell, 2015, Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205, 10.1016/j.cpc.2015.02.008 Patera, 1984, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 468, 10.1016/0021-9991(84)90128-1 Karniadakis, 2005 Huerre, 1990, Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22, 473, 10.1146/annurev.fl.22.010190.002353 Hilborn, 2000 Provansal, 1987, Bénard-von Kármán instability: transient and forced regimes, J. Fluid Mech., 182, 1, 10.1017/S0022112087002222 Davitian, 2010, Transition to global instability in transverse-jet shear layers, J. Fluid Mech., 661, 294, 10.1017/S0022112010003046 Juniper, 2009, Forcing of self-excited round jet diffusion flames, Proc. Combust. Inst., 32, 1191, 10.1016/j.proci.2008.05.065 Li, 2013, Lock-in and quasiperiodicity in hydrodynamically self-excited flames: experiments and modelling, Proc. Combust. Inst., 34, 947, 10.1016/j.proci.2012.06.022 Li, 2013, Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet, J. Fluid Mech., 726, 624, 10.1017/jfm.2013.223 Li, 2013, Phase trapping and slipping in a forced hydrodynamically self-excited jet, J. Fluid Mech., 735, 1 Y. Zhu, V. Gupta, L.K.B. Li, Onset of global instability in low-density jets, J. Fluid Mech. 828. Balusamy, 2015, Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing, Proc. Combust. Inst., 35, 3229, 10.1016/j.proci.2014.05.029 Lee, 2016, Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame, Combust. Theory Model., 20, 131, 10.1080/13647830.2015.1118555 Emerson, 2012, Density ratio effects on reacting bluff-body flow field characteristics, J. Fluid Mech., 706, 219, 10.1017/jfm.2012.248 Åkervik, 2006, Steady solutions of the Navier–Stokes equations by selective frequency damping, Phys. Fluids, 18, 10.1063/1.2211705 Drazin, 2004 Jones, 2008, Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence, J. Fluid Mech., 602, 175, 10.1017/S0022112008000864 Alam, 2000, Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment, J. Fluid Mech., 410, 1, 10.1017/S0022112099008976 Rist, 2002, Investigations of time-growing instabilities in laminar separation bubbles, Eur. J. Mech. B, Fluids, 21, 495, 10.1016/S0997-7546(02)01205-0 Embacher, 2014, Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence, J. Fluid Mech., 747, 141, 10.1017/jfm.2014.123 Rodríguez, 2010, Structural changes of laminar separation bubbles induced by global linear instability, J. Fluid Mech., 655, 280, 10.1017/S0022112010000856 Blackburn, 2008, Convective instability and transient growth in steady and pulsatile stenotic flow, J. Fluid Mech., 607, 267, 10.1017/S0022112008001717 Klebanoff, 1959 Klebanoff, 1971, Effect of free stream turbulence on a laminar boundary layer, Bull. Am. Phys. Soc., 16, 203 Kendall, 1991, Studies on laminar boundary layer receptivity to freestream turbulence near a leading edge, vol. 114, 23 Henningson, 1995, Comment on “Transition in shear flows. Nonliear normality versus non-normal linearity”, Phys. Fluids, 7, 3060, 10.1063/1.868682 Herbert, 1988, Secondary instability of boundary layers, Annu. Rev. Fluid Mech., 20, 487, 10.1146/annurev.fl.20.010188.002415 Hosseinverdi, 2018, Role of Klebanoff modes in active flow control of separation: direct numerical simulations, J. Fluid Mech., 850, 954, 10.1017/jfm.2018.489 Blackburn, 2004, Formulation of a Galerkin spectral element–Fourier method for three–dimensional incompressible flows in cylindrical geometries, J. Comput. Phys., 197, 759, 10.1016/j.jcp.2004.02.013