Non-manifold surface reconstruction from high-dimensional point cloud data
Tài liệu tham khảo
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface reconstruction from unorganized points, in: Proc. 25th Special Interest Group on Graphics SIGGRAPHʼ92, 1992, pp. 71–78.
H. Hoppe, Surface reconstruction from unorganized points, PhD thesis, Dept. of Computer Science and Engineering, University of Washington, 1994.
F. Bernardini, C.L. Bajaj, Sampling and reconstructing manifolds using alpha-shapes, in: Proc. 9th Canad. Conf. Comput. Geom., 1997, pp. 193–198.
Bernardini, 1999, The ball-pivoting algorithm for surface reconstruction, IEEE Trans. Visual. Comput. Graph., 5, 349, 10.1109/2945.817351
Amenta, 1999, Surface reconstruction by Voronoi filtering, Discrete Comput. Geom., 22, 481, 10.1007/PL00009475
N. Amenta, S. Choi, R.K. Kolluri, The power crust, in: Proc. 6th ACM Symposium on Solid Modeling, 2001, pp. 249–260.
Amenta, 2002, A simple algorithm for homeomorphic surface reconstruction, Internat. J. Comput. Geom. Appl., 12, 125, 10.1142/S0218195902000773
T.K. Dey, J. Giesen, Detecting undersampling in surface reconstruction, in: Proc. 17th Symposium on Comput. Geom. SCGʼ01, 2001, pp. 257–263.
T.K. Dey, S. Goswami, Tight cocone: a water-tight surface reconstructor, in: Proc. 8th Symp. on Solid Modeling SMʼ03, 2003, pp. 127–134.
Cheng, 2005, Manifold reconstruction from point samples, 1018
Edelsbrunner, 2003, Surface reconstruction by wrapping finite point sets in space, 379
McMullen, 1970, The maximum number of faces of a convex polytope, Mathematika, 17, 179, 10.1112/S0025579300002850
Freedman, 2007, An incremental algorithm for reconstruction of surfaces of arbitrary codimension, Comput. Geom. Theory Appl., 36, 106, 10.1016/j.comgeo.2006.05.004
Y. Duan, Q. Hong, 2.5d active contour for surface reconstruction, in: Proc. 8th Int. Workshop on Vision, Modeling and Visualization VMVʼ03, 2003, pp. 431–439.
J. Wang, M. Oliveira, A. Kaufman, Reconstructing manifold and non-manifold surfaces from point clouds, in: Proc. of IEEE Visualization, VISʼ05, 2005, pp. 415–422.
Brown, 2008, Algorithmic dimensionality reduction for molecular structure analysis, J. Chem. Phys., 129, 064118, 10.1063/1.2968610
Kirby, 2001
Fukunaga, 1971, An algorithm for finding intrinsic dimensionality of data, IEEE Trans. Comput., 20, 176, 10.1109/T-C.1971.223208
Camastra, 2002, Estimating the intrinsic dimension of data with a fractal-based method, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1404, 10.1109/TPAMI.2002.1039212
Kégl, 2003, Intrinsic dimension estimation using packing numbers, vol. 15, 681
Levina, 2004, Maximum likelihood estimation of intrinsic dimension, vol. 17, 777
Costa, 2004, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process., 52, 2210, 10.1109/TSP.2004.831130
Dresden, 1964
R. Unnikrishnan, M. Hebert, Denoising manifold and non-manifold point clouds, in: 18th British Machine Vision Conference (BMVC), 2007.
Vidal, 2005, Generalized principal component analysis (gpca), IEEE Trans. Pattern Anal. Mach. Intell., 27, 1945, 10.1109/TPAMI.2005.244
de Silva, 2002, Global versus local methods in nonlinear dimensionality reduction, vol. 15, 705
Silva, 2005, Selecting landmark points for sparse manifold learning, vol. 18, 1241
Cox, 2001
Gray, 1997
Rote, 2006, Computational topology: An introduction, 277
P. Henrique, R.F.V. Viana, S. Northrup, Self intersections in immersions of the projective plane, in: Proc. of the International Research Experience for Students in Mathematics (IRES), 2007.
Hendrickson, 1967, Molecular geometry. V. Evaluation of functions and conformations of medium rings, J. Amer. Chem. Soc., 89, 7036, 10.1021/ja01002a036
Rocha, 1998, Ab initio conformational analysis of cyclooctane molecule, J. Comput. Chem., 19, 524, 10.1002/(SICI)1096-987X(19980415)19:5<524::AID-JCC5>3.0.CO;2-O
K, 2000, Conformational properties of cyclooctane: a molecular dynamics simulation study, Mol. Phys., 98, 211, 10.1080/00268970009483284
Coutsias, 2006, Resultants and loop closure, Int. J. Quantum Chem., 106, 176, 10.1002/qua.20751
Porta, 2007, Complete maps of molecular-loop conformational spaces, J. Comput. Chem., 28, 2170, 10.1002/jcc.20733
Dymarsky, 2005, Computation of the pseudorotation matrix to satisfy the Eckart axis conditions, J. Chem. Phys., 122, 124103, 10.1063/1.1864872
Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319