Non-linear stabilization of high-order Flux Reconstruction schemes via Fourier-spectral filtering

Journal of Computational Physics - Tập 303 - Trang 269-294 - 2015
Kartikey Asthana1, Manuel R. López-Morales1, Antony Jameson1
1Department of Aeronautics and Astronautics, Stanford University, CA 94305, USA

Tài liệu tham khảo

Chavent, 1989, The local projection P0P1-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO, Model. Math. Anal. Numer., 23, 565, 10.1051/m2an/1989230405651 Lesaint, 1974, On a finite element method for solving the neutron transport equation, 89 Reed, 1973 Hesthaven, 2008, Nodal Discontinuous Galerkin Methods, vol. 54 Hartmann, 2002, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 508, 10.1006/jcph.2002.7206 Remacle, 2003, An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., 45, 53, 10.1137/S00361445023830 van der Vegt, 1998, Discontinuous Galerkin finite element method with anisotropic local grid refinement for inviscid compressible flows, J. Comput. Phys., 141, 46, 10.1006/jcph.1998.5904 Fidkowski, 2011, Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J., 49, 673, 10.2514/1.J050073 van Leer, 1979, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Biswas, 1994, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255, 10.1016/0168-9274(94)90029-9 Krivodonova, 2007, Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879, 10.1016/j.jcp.2007.05.011 Kuzmin, 2014, Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J. Comput. Phys., 257, 1140, 10.1016/j.jcp.2013.04.032 Burbeau, 2001, A problem-independent limiter for high-order Runge–Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 111, 10.1006/jcph.2001.6718 Visbal, 2001, Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes, J. Comput. Acoust., 09, 1259, 10.1142/S0218396X01000541 Sengupta, 2009, Design and analysis of a new filter for LES and DES, Comput. Struct., 87, 735, 10.1016/j.compstruc.2008.12.009 Vasilyev, 1998, A general class of commutative filters for LES in complex geometries, J. Comput. Phys., 146, 82, 10.1006/jcph.1998.6060 Blackburn, 2003, Spectral element filtering techniques for large eddy simulation with dynamic estimation, J. Comput. Phys., 186, 610, 10.1016/S0021-9991(03)00088-3 Sagaut, 1999, Discrete filters for large eddy simulation, Int. J. Numer. Methods Fluids, 31, 1195, 10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H Adams, 2002, A subgrid-scale deconvolution approach for shock capturing, J. Comput. Phys., 178, 391, 10.1006/jcph.2002.7034 Bogey, 2009, A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations, J. Comput. Phys., 228, 1447, 10.1016/j.jcp.2008.10.042 van der Ven, 1995, A family of large eddy simulation (LES) filters with nonuniform filter widths, Phys. Fluids, 7, 1171, 10.1063/1.868561 Tadmor, 1999, Super viscosity and spectral approximations of nonlinear conservation laws, 69 Hesthaven, 2007, Spectral Methods for Time-Dependent Problems, vol. 21 Hesthaven, 2008, Filtering in Legendre spectral methods, Math. Comput., 77, 1425, 10.1090/S0025-5718-08-02110-8 Meister, 2011, Application of spectral filtering to discontinuous Galerkin methods on triangulations, Numer. Methods Partial Differ. Equ. Vandeven, 1991, Family of spectral filters for discontinuous problems, J. Sci. Comput., 6, 10.1007/BF01062118 Gottlieb, 1997, On the Gibbs phenomenon and its resolution, SIAM Rev., 39, 644, 10.1137/S0036144596301390 Gottlieb, 2001, Spectral methods for hyperbolic problems, J. Comput. Appl. Math., 128, 83, 10.1016/S0377-0427(00)00510-0 Mirzaee, 2013, Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous Galerkin solutions: application to structured tetrahedral meshes, J. Sci. Comput. Zhu, 2013, Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys., 248, 200, 10.1016/j.jcp.2013.04.012 Krivodonova, 2004, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math., 48, 323, 10.1016/j.apnum.2003.11.002 P. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit 9–12 January 2006, Reno, Nevada. G.E. Barter, D.L. Darmofal, Shock capturing with higher-order, PDE-based artificial viscosity, in: 18th AIAA Computational Fluid Dynamics Conference 25–28 June 2007, Miami, FL. Cai, 1989, Essentially nonoscillatory spectral Fourier methods for shock wave calculations, Math. Comput., 52, 389 Shu, 1989, Efficient implementation of essentially non-oscillatory shock-capturing schemes. II, J. Comput. Phys., 83, 32, 10.1016/0021-9991(89)90222-2 Cook, 2005, Hyperviscosity for shock–turbulence interaction, J. Comput. Phys., 203, 379, 10.1016/j.jcp.2004.09.011 Kawai, 2008, Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes, J. Comput. Phys., 227, 9498, 10.1016/j.jcp.2008.06.034 Tadmor, 1987, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 91, 10.1090/S0025-5718-1987-0890255-3 Tadmor, 2003, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems, Acta Numer., 12, 451, 10.1017/S0962492902000156 Svärd, 2009, Shock capturing artificial dissipation for high-order finite difference schemes, J. Sci. Comput., 39, 454, 10.1007/s10915-009-9285-1 Fisher, 2013, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518, 10.1016/j.jcp.2013.06.014 Carpenter, 2014, Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, B835, 10.1137/130932193 H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA Conference Paper 2007–4079. Castonguay, 2012, A new class of high-order energy stable flux reconstruction schemes for triangular elements, J. Sci. Comput., 51, 224, 10.1007/s10915-011-9505-3 Williams, 2013, Energy stable flux reconstruction schemes for advection–diffusion problems on tetrahedra, J. Sci. Comput. Kopriva, 1996, A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys., 125, 244, 10.1006/jcph.1996.0091 Liu, 2006, Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys., 216, 780, 10.1016/j.jcp.2006.01.024 Asthana, 2014, High-order flux reconstruction schemes with minimal dispersion and dissipation, J. Sci. Comput. Lopez, 2015, Families of provably-stable flux reconstruction schemes with correction functions continuous in m derivatives, Comput. Methods Appl. Mech. Eng. Vincent, 2011, A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 50, 10.1007/s10915-010-9420-z Vincent, 2011, Insights from von Neumann analysis of high-order flux reconstruction schemes, J. Comput. Phys., 230, 8134, 10.1016/j.jcp.2011.07.013 Jameson, 2012, On the non-linear stability of flux reconstruction schemes, J. Sci. Comput., 50, 434, 10.1007/s10915-011-9490-6 Gelb, 1999, Detection of edges in spectral data, Appl. Comput. Harmon. Anal., 7, 101, 10.1006/acha.1999.0262 Gelb, 2000, Detection of edges in spectral data. II-Nonlinear enhancement, SIAM J. Numer. Anal., 38, 1389, 10.1137/S0036142999359153 Gelb, 2008, Detection of edges in spectral data III-refinement of the concentration method, J. Sci. Comput., 36, 1, 10.1007/s10915-007-9170-8 A. Sheshadri, A. Jameson, Shock detection and capturing methods for high order discontinuous-Galerkin finite element methods, in: 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, 16–20 June 2014, AIAA 2014-2688. Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 10.1016/0021-9991(78)90023-2 Woodward, 1984, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115, 10.1016/0021-9991(84)90142-6 Canuto, 1982, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comput., 38, 10.1090/S0025-5718-1982-0637287-3 Bernardi, 1992, Polynomial interpolation results in Sobolev spaces, J. Comput. Appl. Math., 43, 53, 10.1016/0377-0427(92)90259-Z J.R. Bull, A. Jameson, Simulation of the compressible Taylor Green vortex using high-order flux reconstruction schemes, in: 7th AIAA Theoretical Fluid Mechanics Conference, 16–20 June 2014, Atlanta, GA, AIAA Paper 2014-3210. Jiang, 1996, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202, 10.1006/jcph.1996.0130