Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phản ứng phi tuyến dưới bức xạ terahertz của nanowire V-groove không đối xứng Ga1−xAlxAs/GaAs/Ga1−yAlyAs chứa một nhà cho điện kép đã ion hóa đơn
Tóm tắt
Phân tích lý thuyết về sự khắc phục quang phi tuyến (NOR), sự tạo ra hài bậc hai (SHG) và hài bậc ba (THG) của một nhà cho điện kép đã ion hóa đơn (SIDD) trong nanowire V-groove không đối xứng $$\mathrm {Ga_{1-x}Al_xAs/GaAs/ Ga_{1-y}Al_yAs}$$ được thực hiện. Các mức năng lượng được tính toán cho thấy hành vi tương tự như phân tử với các điểm giao nhau do sự kẹp chặt của V-groove. Các giá trị các tham số hình thái đã được chọn lựa kỹ lưỡng của V-groove cho phép điều chỉnh các hệ số quang trong dải THz. NOR, SHG và THG có sự phụ thuộc mạnh vào khoảng cách giữa các nhà cho. Các giá trị lớn hơn của NOR cho SIDD so với hệ thống điện tử đơn lẻ đã được thu được. Ngược lại, các giá trị lớn hơn của các hệ số SHG và THG cho các electron đơn lẻ có thể được tính toán so với SIDD ở khoảng cách nhà cho – nhà cho nhỏ.
Từ khóa
#quang phi tuyến #khắc phục quang phi tuyến #hài bậc hai #hài bậc ba #nhà cho điện kép #nanowire V-groove #Ga1−xAlxAs/GaAs/Ga1−yAlyAsTài liệu tham khảo
Hao R, Chen L, Wu J, Fan D, Wu Y, Liang S (2021) Effects of growth temperature change in quantum well on luminescence performance and optical spectrum. Optik 235:166606. https://doi.org/10.1016/j.ijleo.2021.166606
Tung L, Lam V, Hoa L, Phuc HV (2021) Nonlinear magneto-optical absorption in a finite semi-parabolic quantum well. Opt Quantum Electron. https://doi.org/10.1007/s11082-021-02817-y
Chatterjee S (2020) Direct band gap silicon nanowire avalanche transit time thz opto-electronic sensor with strain-engineering. Opt Quantum Electr. https://doi.org/10.1007/s11082-020-02563-7
Vasilchenko AA, Kopytov GF (2020) Electronic structure of quantum wire in the strong magnetic field. Russ Phys J 63(4):708–709. https://doi.org/10.1007/s11182-020-02087-3
Pohl UW, Strittmatter A, Schliwa A, Lehmann M, Niermann T, Heindel T, Reitzenstein S, Kantner M, Bandelow U, Koprucki T, Wünsche HJ (2020) Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources, pp. 53–90. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-35656-93
Avazzadeh Z, Bahramiyan H (2020) Simultaneous effects of pressure, temperature, impurity location, soi and magnetic field on thg of a pyramid quantum dot. Opt Quantum Electr. https://doi.org/10.1007/s11082-020-2230-0
Abdellatif M, Lee J (2016) Optical study of nanostructured semiconductor materials: engineering the quantum confinement
Ridene S (2018) Mid-infrared emission in \(\rm In_xGa_{1-x}As/GaAs\) t-shaped quantum wire lasers and its indium composition dependence. Infrared Phys Technol 89:218–222. https://doi.org/10.1016/j.infrared.2018.01.009
Chaves A, Silva J, Freire J, Degani M, Valder F, Farias G (2007) Influence of graded interfaces on the exciton energy of type-i and type-ii \(\rm Si/Si_{1-x}Ge_x\) quantum wires. J Mater Sci 42:2314–2317. https://doi.org/10.1007/s10853-006-0617-3
Restrepo Arango R, Miranda G, Duque C (2010) Electronic states in double quantum well-wires with potential w-profile: Combined effects of hydrostatic pressure and electric field. J Mater Sci 45:5045–5053. https://doi.org/10.1007/s10853-010-4334-6
Gil-Corrales JA, Vinasco JA, Radu A, Restrepo RL, Morales AL, Mora-Ramos ME, Duque CA (2021) Self-consistent schrödinger-poisson study of electronic properties of gaas quantum well wires with various cross-sectional shapes. Nanomaterials. https://doi.org/10.3390/nano11051219
Tribe WR, Steer MJ, Mowbray DJ, Skolnick MS, Forshaw AN, Roberts JS, Hill G, Pate MA, Whitehouse CR, Williams GM (1997) Emission mechanisms and band filling effects in gaas-algaas v-groove quantum wires. Appl Phys Lett 70(8):993–995. https://doi.org/10.1063/1.118459
Lloyd SJ, P’Ng KMY, Clegg WJ, Bushby AJ, Dunstan DJ (2005) Effect of coherency strain on the deformation of in x ga1-x as superlattices under nanoindentation and bending. Philos Mag 85(22):2469–2490. https://doi.org/10.1080/14786430500070909
Pelucchi E, Moroni S, Dimastrodonato V, Vvedensky D (2018) Self-ordered nanostructures on patterned substrates. J Mater Sci Mater Electron 29:952–967. https://doi.org/10.1007/s10854-017-7993-0
Bouazra A, Abdi-Ben Nasrallah S, Said M (2015) Application of coordinate transformation and finite differences method for electron and hole states calculations. Phys E Low Dimens Syst Nanostruct 65:93–99. https://doi.org/10.1016/j.physe.2014.08.011
Giraldo-Tobón E, Ospina W, Miranda GL, Fulla M (2019) Energy spectrum analysis of a realistic single-electron \(mathrm{Ga_{1?x}Al_xAs/GaAs/Ga_{1?x}Al_xAs}\) quantum v-groove in external electric field. Phys E Low Dimens Syst Nanostruct. https://doi.org/10.1016/j.physe.2019.113652
Giraldo-Tobón E, Miranda GL, Fulla M (2021) Non-linear optical generation in ga1-yalyas/gaas/ga1-xalxas quantum v-grooves: The effects of temperature and hydrostatic pressure. Photon Nanostruct Fundam Appl 45:100919. https://doi.org/10.1016/j.photonics.2021.100919
Felici M, Pettinari G, Carron R, Lavenuta G, Tartaglini E, Polimeni A, Fekete D, Gallo P, Dwir B, Rudra A, Christianen PCM, Maan JC, Capizzi M, Kapon E (2012) Magneto-optical properties of single site-controlled InGaAsN quantum wires grown on prepatterned GaAs substrates. Phys Rev B 85:155319. https://doi.org/10.1103/PhysRevB.85.155319
Pramjorn N, Amthong A (2020) Donor binding energies in a curved two-dimensional electron system. Appl Surf Sci 508:145195. https://doi.org/10.1016/j.apsusc.2019.145195
Salazar-Santa JD, Fonnegra-García D, Marín JH (2021) Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. Opt Quantum Electron 53:176. https://doi.org/10.1007/s11082-021-02836-9
Manjarres-Garcíaa R, Escorcia Salas G, Mikhailov ID, Sierra-Ortega J (2012) Singly ionized double-donor complex in vertically coupled quantum dots. Nanoscale Res Lett 7:489. https://doi.org/10.1186/1556-276X-7-489
Dwir B, Kaufman D, Berk Y, Rudra A, Palevski A, Kapon E (1999) Electron transport in algaas/gaas v-groove quantum wires. Phys B 259–261:1025–1027. https://doi.org/10.1016/S0921-4526(98)00956-9
Elabsy AM (1994) Effect of the Gamma -X crossover on the binding energies of confined donors in single \(GaAs/Al_xGa_{1-x}As\) quantum-well microstructures. J Phys Condens Matter 6(46):10025–10030. https://doi.org/10.1088/0953-8984/6/46/019
Reyes-Gómez E, Raigoza N, Oliveira LE (2008) Effects of hydrostatic pressure and aluminum concentration on the conduction-electron \(g\) factor in GaAs-(Ga, Al)As quantum wells under in-plane magnetic fields. Phys Rev B 77:115–308. https://doi.org/10.1103/PhysRevB.77.115308
Landau LD, Lifshitz EM (1977) Quantum Mechanics: Non-relativistic Theory, 3 edn. Pergamon Press Ltd., Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England
Hecht F (2012) New development in freefem++. J Numer Math 20:251–266. https://doi.org/10.1515/jnum-2012-0013
Boyd R, Prato D (2008) Nonlinear optics. Elsevier Science
Kırak M, Yılmaz S, Şahin M, Gençaslan M (2011) The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot. J Appl Phys 109(9):094309. https://doi.org/10.1063/1.3582137
Kavruk AE, Sahin M, Atav Ü (2014) A detailed investigation of electronic and intersubband optical properties of \(\rm Al_xGa_{1-x}As/Al_{0.3}Ga_{0.7}As/Al_yGa_{1-y}As/Al_{0.3}Ga_{0.7}As\) multi-shell quantum dots. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/47/29/295302
Ahn D, Chuang S (1987) Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J Quantum Electr 23(12):2196–2204
Levine IN (2000) Quantum Chemistry, 5th ed edn. Prentice Hall
Steer M, Mowbray D, Skolnick M, Tribe W, Forshaw A, Whittaker D, Roberts J, Cullis A, Hill G, Pate M, Whitehouse C (1998) Optical spectroscopy of gaas-algaas v-groove quantum wires. Phys E Low Dimens Syst Nanostruct 2(1):949–953. https://doi.org/10.1016/S1386-9477(98)00194-5