Non-linear diffusion of image noise with minimal iterativity

Journal of Real-Time Image Processing - Tập 11 Số 3 - Trang 445-455 - 2016
Eva Rifkah1, A. Amer1
1Department of Electrical and Computer Engineering, Concordia University, Montréal, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achkar F., Amer A.: Hysteresis-based selective Gaussian mixture models for real-time background maintenance. In: Proceedings of the SPIE Visual Communications and Image Process, vol. 6508, pp. 2J1–2J12. San Jose (2007)

Acton, S.: Edge enhancement of infrared imagery by way of the anisotropic diffusion pyramid. In: Proceedings of the IEEE International Conference of Image Process, pp. 16–19. Lausanne (1996)

Acton, S.: Multigrid anisotropic diffusion. IEEE Trans. Image Process. 7(3):280–291 (1998)

Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9):2694–2701 (2006)

Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3):199–257 (1993)

Atzori, L., Natale, F.D., Granelli, F.: Adaptive anisotropic filtering (AAF) for real-time visual enhancement of MPEG-coded video sequences. IEEE Trans. Circuits Syst. Video Techn. 12(5):285–298 (2002)

Barcelos, C., Boaventura, M., Silva, E. A well-balanced flow equation for noise removal and edge detection. IEEE Trans. Image Process. 12(7):751–763 (2003)

Barcelos, C., Boaventura, M., Silva, E.: Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters. Comput. Appl. Math. 24(1):131–150 (2005)

Black, M., Sapiro, G., Marimont, D., Heeger, D. Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3):421–432 (1998)

Fujio T. (1980) A universal weighted power function of television noise and its application to high-definition TV-system design. IEEE Trans. Broadc. BC-26(2):39–48

Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging. 11(2):221–232

Ghazal, M., Su, C., Amer, A.: Motion and region detection for effective recursive temporal noise reduction. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 677–680. ICASSP, 2007, Honolulu (2007)

Gilboa, G., Sochen, N., Zeevi, Y.: Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8):2269–2280 (2006)

Hongwei, Z., Jianwei, Z., Jian, C., Wulin, W., Jinfeng, G., Xu, W.: Robust fast marching method based on anisotropic diffusion. In: International Conference on Natural Computation, pp. 159–162. IEEE Computer Society, Washington, DC (2007)

Kichenassamy, S.: The Perona–Malik paradox. J. Appl. Math. 57:1328–1342 (1997)

Krutz, A., Kunter, M., Mandal, M., Frater, M., Sikora, T.: Motion-based object segmentation using sprites and anisotropic diffusion. In: International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). Santorini (2007)

Lee, S., Kang, M.: Spatio-temporal video filtering algorithm based on 3-D anisotropic diffusion equation. In: Proceedings of the IEEE International Conference of Image Process, pp II, 447–450 (1998)

Mosteller, F., Tukey, J.: Data analysis and regression. Addison-Wesley, Reading (1977)

Mrázek, P.: Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput. Vis. 52(2/3):189–203 (2003)

Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):692–639 (1990)

Rosin, P.L.: Thresholding for change detection. Comput. Vis. Image Underst. 86:79–95 (2002)

Sahni, O., Müller, J., Jansen, K., Shephard, M., Taylor, C.: Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655 (2006)

Scharr, H., Spies, H.: Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion. Signal Process. Image Commun. 20(6):537–553 (2005)

Shao, H., Zou, H.: Threshold estimation based on Perona–Malik model. In: International Conference on Computational Intelligence and Software Engineering, pp. 1–4. IEEE, Wuhan (2009)

Stewart, C.: Robust parameter estimation in computer vision. SIAM Rev. 41(3):513–537 (1999)

Tang, J., Sun, Q., Cao, Y., Liu, J.: An adaptive anisotropic diffusion filter for noise reduction in MRI images. In: IEEE International Conference on Mechatronics and Automation, Harbin, pp. 1299–1304 (2007)

Tschumperlé, D.: Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int. J. Comput. Vis. 68(1):65–82 (2006)

Voci, F., Mascioli, F.: ISAR image segmentation by non linear diffusion equation. In: IEEE Conference on Radar, pp. 835–838 (2006)

Voci, F., Eiho, S., Sugimoto, N., Sekiguchi, H.: Estimating the gradient in the Perona-Malik equation. IEEE Signal Process. Mag. 21(3):39–65 (2004)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13:600–612 (2004)

Weickert, J.: Coherence-enhancing diffusion of colour images. IVC. 17(3/4):201–212 (1999)

Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3):398–410 (1998)

Yao, S., Lin, W., Ong, E.P., Lu, Z.: Recovery of compressed videos using forward and backward anisotropic diffusion. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2006)

Yu, Y., Acton, S.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11):1260–1270 (2002)

Zhang, J., Zheng, J., Cai, J.: A diffusion approach to seeded image segmentation. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 2125–2132 (2010)

Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15:59–76 (1997)