Non-iterative parameter estimation of the 2R-1C model suitable for low-cost embedded hardware

Mitar Simić1, Zdenka Babić1, Vladimir Risojević1, Goran M. Stojanović2
1Faculty of Electrical Engineering, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
2Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Republic of Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbasbandy S, 2005. Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl Math Comput, 170(1): 648–656. https://doi.org/10.1016/j.amc.2004.12.048

Al-Ali AA, Elwakil AS, Maundy BJ, et al., 2018. Extraction of phase information from magnitude-only bio-impedance measurements using a modified Kramers-Kronig transform. Circ Syst Signal Process, 37(8): 3635–3650. https://doi.org/10.1007/s00034-017-0727-y

Babolian E, Biazar J, Vahidi AR, 2004. Solution of a system of nonlinear equations by Adomian decomposition method. Appl Math Comput, 150(3): 847–854. https://doi.org/10.1016/S0096-3003(03)00313-8

Barsoukov E, Macdonald JR, 2005. Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons, Inc., USA.

Bertrand CA, Hopfer U, 2002. Measurement of membrane capacitance in epithelial monolayers. In: Wise C (Ed.), Epithelial Cell Culture Protocols. Humana Press, p.315–327. https://doi.org/10.1385/1-59259-185-X:315

Blad B, 1996. Clinical applications of characteristic frequency measurements: preliminary in vivo study. Med Biol Eng Comput, 34(5): 362–365. https://doi.org/10.1007/BF02520006

Boinet M, Condolf C, Goulet R, et al., 2016. Parameter identification in electrochemical impedance spectroscopy applications: analysis of sensitivity. Meet Abstr, MA2016–02: 1707.

Bondarenko AS, 2012. Analysis of large experimental datasets in electrochemical impedance spectroscopy. Anal Chim Acta, 743: 41–50. https://doi.org/10.1016/j.aca.2012.06.055

Boukamp BA, Rolle A, 2018. Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes. Sol State Ion, 314: 103–111. https://doi.org/10.1016/j.ssi.2017.11.021

Cordero A, Torregrosa JR, 2007. Variants of Newton’s method using fifth-order quadrature formulas. Appl Math Comput, 190(1): 686–698. https://doi.org/10.1016/j.amc.2007.01.062

Darvishi MT, Barati A, 2007. A third-order Newton-type method to solve systems of nonlinear equations. Appl Math Comput, 187(2): 630–635. https://doi.org/10.1016/j.amc.2006.08.080

de Lorenzo A, Andreoli A, Matthie J, et al., 1997. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol, 82(5): 1542–1558. https://doi.org/10.1152/jappl.1997.82.5.1542

Dong TK, Kirchev A, Mattera F, et al., 2011. Dynamic modeling of Li-ion batteries using an equivalent electrical circuit. J Electrochem Soc, 158(3): A326–A336.

Ferreira J, Seoane F, Ansede A, et al., 2010. AD5933-based spectrometer for electrical bioimpedance applications. J Phys, 224(1): 012011. https://doi.org/10.1088/1742-6596/224/1/012011

Ferreira J, Seoane F, Lindecrantz K, 2013. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications. Proc 35th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p.559–562. https://doi.org/10.1109/EMBC.2013.6609561

Freeborn TJ, Elwakil AS, Maundy B, 2017. Variability of cole-model bioimpedance parameters using magnitudeonly measurements of apples from a two-electrode configuration. Int J Food Prop, 20(S1): S507–S519. https://doi.org/10.1080/10942912.2017.1300810

Gheorghe AG, Marin CV, Constantinescu F, et al., 2012. Parameter identification for a new circuit model aimed to predict body water volume. Adv Electr Comput Eng, 12(4): 83–86. https://doi.org/10.4316/AECE.2012.04013

Golbabai A, Javidi M, 2007. A new family of iterative methods for solving system of nonlinear algebric equations. Appl Math Comput, 190(2): 1717–1722. https://doi.org/10.1016/j.amc.2007.02.055

Holevinsky KO, Nelson DJ, 1998. Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys J, 75(5): 2577–2586. https://doi.org/10.1016/S0006-3495(98)77703-3

Hotka M, Zahradnik I, 2014. Membrane capacitance changes due to temperature increase in rat cardiac myocytes. Biophys J, 106(2 Suppl 1): 121A–122A. https://doi.org/10.1016/j.bpj.2013.11.726

Kern R, Sastrawan R, Ferber J, et al., 2002. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta, 47(26):4213–4225. https://doi.org/10.1016/S0013-4686(02)00444-9

Kyle UG, Genton L, Slosman DO, et al., 2001. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition, 17(7-8): 534–541. https://doi.org/10.1016/S0899-9007(01)00555-X

Lazović G, Vosika Z, Lazarević M, et al., 2014. Modeling of bioimpedance for human skin based on fractional distributed-order modified cole model. FME Trans, 42(1): 74–81. https://doi.org/10.5937/fmet1401075L

Manjakkal L, Cvejin K, Kulawik J, et al., 2014. Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sens Actuat B, 204: 57–67. https://doi.org/10.1016/j.snb.2014.07.067

Manjakkal L, Djurdjic E, Cvejin K, et al., 2015a. Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors. Electrochim Acta, 168: 246255. https://doi.org/10.1016/j.electacta.2015.04.048

Manjakkal L, Cvejin K, Bajac B, et al., 2015b. Microstructural, impedance spectroscopic and potentiometric analysis of Ta2O5 electrochemical thick film pH sensors. Electroanalysis, 27(3): 770–781. https://doi.org/10.1002/elan.201400571

Maundy BJ, Elwakil AS, Allagui A, 2015. Extracting the parameters of the single-dispersion cole bioimpedance model using a magnitude-only method. Comput Electr Agric, 119: 153–157. https://doi.org/10.1016/j.compag.2015.10.014

Moss P, Au G, Plichta EJ, et al., 2008. An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc, 155(12): A986–A994. https://doi.org/10.1149/1.2999375

Noor MA, 2007. Fifth-order convergent iterative method for solving nonlinear equations using quadrature formula. J Math Contr Sci Appl, 1: 241–249.

Ortega JM, Rheinboldt WC, 1970. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, USA.

Pena AA, 2009. A feasibility study of the suitability of an AD5933-based spectrometer for EBI applications. University of Boras, Boras, p.2009–2010.

Qiao GF, Wang W, Duan W, et al., 2012. Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE Trans Biomed Eng, 59(8): 2321–2329. https://doi.org/10.1109/TBME.2012.2202904

Rami’rez-Chavam’a RG, Quintana-Carapia G, Müller MI, et al., 2018. Bioimpedance parameter estimation using fast spectral measurements and regularization. IFAC-PapersOnLine, 51(15): 521–526. https://doi.org/10.1016/j.ifacol.2018.09.198

Sanchez B, Schoukens J, Bragos R, et al., 2011. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle. IEEE Trans Biomed Eng, 58(12): 3376–3385. https://doi.org/10.1109/TBME.2011.2166116

Sanchez B, Rojas CR, Vandersteen G, et al., 2012. On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements. Meas Sci Technol, 23(8): 085702. https://doi.org/10.1088/0957-0233/23/8/085702

Sanchez B, Bandarenka AS, Vandersteen G, et al., 2013. Novel approach of processing electrical bioimpedance data using differential impedance analysis. Med Eng Phys, 35(9): 1349–1357.

Sanchez Terrones B, Louarroudi E, Pintelon R, et al., 2013. Modeling the non-stationary behaviour of time-varying electrical bioimpedance. Proc 19th IMEKO Symp Measurements of Electrical Quantities, p.378–384.

Santos-Sacchi J, 2004. Determination of cell capacitance using the exact empirical solution of δY/δCm and its phase angle. Biophys J, 87(1): 714–727. https://doi.org/10.1529/biophysj.103.033993

Schulz H, Teske D, Penven D, et al., 2006. Fat-free mass from two prediction equations for bioelectrical impedance analysis in a large German population compared with values in Swiss and American adults: reasons for a biadata project. Nutrition, 22(9): 973–975. https://doi.org/10.1016/j.nut.2006.04.007

Seoane F, Ferreira J, Sanchez JJ, et al., 2008. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol Meas, 29(6): S267–S278. https://doi.org/10.1088/0967-3334/29/6/S23

Simić M, 2014. Complex impedance measurement system for environmental sensors characterization. Proc 22nd Telecommunications Forum Telfor, p.660–663. https://doi.org/10.1109/TELFOR.2014.7034495

Simić M, Stojanović GM, 2017. Compact electronic system for complex impedance measurement and its experimental verification. Proc European Conf on Circuit Theory and Design, p.1–4. https://doi.org/10.1109/ECCTD.2017.8093360

Simić M, Babić Z, Risojević V, et al., 2016. A novel non-iterative method for real-time parameter estimation of the Fricke-Morse model. Adv Electr Comput Eng, 16(4): 57–62. https://doi.org/10.4316/AECE.2016.04009

Simić M, Babić Z, Risojević V, et al., 2017a. A novel approach for parameter estimation of Fricke-Morse model using differential impedance analysis. Proc Int Conf on Medical and Biological Engineering, p.487–494. https://doi.org/10.1007/978-981-10-4166-2_75

Simić M, Manjakkal L, Zaraska K, et al., 2017b. TiO2-based thick film pH sensor. IEEE Sens J, 17(2): 248–255. https://doi.org/10.1109/JSEN.2016.2628765

Vargas-Bernal R, de la Cruz Blas CA, Gòmez-Polo C, 2018. Electrical circuit modeling of sensor magneto-impedances with a square-root frequency dependence. IEEE Sens J, 18(2): 623–628. https://doi.org/10.1109/JSEN.2017.2776525

Wang CS, Nehrir MH, Shaw SR, 2005. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Conv, 20(2): 442–451. https://doi.org/10.1109/TEC.2004.842357

Wang Z, Luo M, Geng Y, et al., 2018. A model to compare convective and radiant heating systems for intermittent space heating. Appl Energy, 215: 211–226. https://doi.org/10.1016/j.apenergy.2018.01.088

Ward LC, Heitmann BL, 1998. Multiple frequency bioelectrical impedance analysis (MFBIA) and R-X plots in the assessment of obesity. Proc Aust Soc Study Obesity, 7:20.

Ward LC, Heitmann BL, Craig P, et al., 2000. Association between ethnicity, body mass index, and bioelectrical impedance: implications for the population specificity of prediction equations. Ann N Y Acad Sci, 904(1): 199–202. https://doi.org/10.1111/j.1749-6632.2000.tb06449.x

Yousri DA, AbdelAty AM, Said LA, et al., 2017. Biological inspired optimization algorithms for cole-impedance parameters identification. AEU-Int J Electron Commun, 78: 79–89. https://doi.org/10.1016/j.aeue.2017.05.010