Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích chuyển hóa nước tiểu không xâm lấn phân biệt ung thư tuyến tiền liệt với phì đại lành tính tuyến tiền liệt
Tóm tắt
Ung thư tuyến tiền liệt (PCa) là một trong những bệnh ác tính phổ biến nhất ở nam giới trên toàn thế giới. Mức độ kháng nguyên đặc hiệu tuyến tiền liệt (PSA) trong huyết thanh đã được sử dụng rộng rãi như một dấu ấn sinh học để phát hiện PCa. Tuy nhiên, PSA không đặc hiệu cho ung thư và nhiều tình trạng không ác tính, bao gồm phì đại lành tính tuyến tiền liệt (BPH), có thể gây tăng mức PSA trong máu, từ đó dẫn đến nhiều kết quả dương tính giả. Trong nghiên cứu này, chúng tôi đánh giá khả năng của phân tích chuyển hóa nước tiểu trong việc phân biệt PCa với BPH. Mẫu nước tiểu từ 64 bệnh nhân PCa và 51 cá nhân được chẩn đoán mắc BPH đã được phân tích bằng phương pháp cộng hưởng từ hạt nhân 1H (1H-NMR). Phân tích so sánh các hồ sơ chuyển hóa nước tiểu được thực hiện bằng các phương pháp thống kê đa biến và đơn biến. Hồ sơ chuyển hóa nước tiểu của bệnh nhân PCa được đặc trưng bởi nồng độ tăng của các axit amin chuỗi nhánh (BCAA), glutamate và pseudouridine, và nồng độ giảm của glycine, dimethylglycine, fumarate và 4-imidazole-acetate so với những cá nhân được chẩn đoán mắc BPH. Bệnh nhân PCa có một hồ sơ chuyển hóa nước tiểu đặc hiệu. Kết quả của nghiên cứu của chúng tôi nhấn mạnh tiềm năng lâm sàng của phân tích chuyển hóa trong việc phát hiện những biến đổi trao đổi chất có thể hữu ích để phân biệt PCa với BPH trong ngữ cảnh lâm sàng.
Từ khóa
#Ung thư tuyến tiền liệt #kháng nguyên đặc hiệu tuyến tiền liệt (PSA) #phì đại lành tính tuyến tiền liệt (BPH) #phân tích chuyển hóa nước tiểu #cộng hưởng từ hạt nhân.Tài liệu tham khảo
Andersen, C. M., & Bro, R. (2010). Variable selection in regression—a tutorial. Journal of Chemometrics, 24(11-12), 728–737.
Barbieri, C. E., Demichelis, F., & Rubin, M. A. (2012). Molecular genetics of prostate cancer: Emerging appreciation of genetic complexity. Histopathology, 60(1), 187–198.
Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692–2703.
Bianchi, F., Dugheri, S., Musci, M., Bonacchi, A., Salvadori, E., Arcangeli, G., et al. (2011). Fully automated solid-phase microextraction-fast gas chromatography-mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Analytica Chimica Acta, 707(1–2), 197–203.
Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359.
Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013). The human urine metabolome. PLoS ONE, 8(9), e73076.
Bunting, P. S. (2002). Screening for prostate cancer with prostate-specific antigen: Beware the biases. Clinica Chimica Acta; International Journal of Clinical Chemistry, 315(1–2), 71–97.
Chen, J. Q., & Russo, J. (2012). Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochimica et Biophysica Acta, 1826(2), 370–384.
Cobas, J. C., & Sardina, F. J. (2003). Nuclear magnetic resonance data processing. MestRe-C: A software package for desktop computers. Concepts in Magnetic Resonance Part A, 19A(2), 80–96.
DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7(1), 11–20.
Diaz, S. O., Barros, A. S., Goodfellow, B. J., Duarte, I. F., Galhano, E., Pita, C., et al. (2013). Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. Journal of Proteome Research, 12(6), 2946–2957.
Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290.
Draisma, G., Boer, R., Otto, S. J., van der Cruijsen, I. W., Damhuis, R. A., Schroder, F. H., et al. (2003). Lead times and overdetection due to prostate-specific antigen screening: Estimates from the European Randomized Study of Screening for Prostate Cancer. Journal of the National Cancer Institute, 95(12), 868–878.
Duarte, I. F., & Gil, A. M. (2012). Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Progress in Nuclear Magnetic Resonance Spectroscopy, 62, 51–74.
Eigenbrodt, E., Kallinowski, F., Ott, M., Mazurek, S., & Vaupel, P. (1998). Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Res, 18(5A), 3267–3274.
Etzioni, R., Penson, D. F., Legler, J. M., di Tommaso, D., Boer, R., Gann, P. H., et al. (2002). Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. Journal of the National Cancer Institute, 94(13), 981–990.
Fan, J., Hong, J., Hu, J.-D., & Chen, J.-L. (2012). Ion chromatography based urine amino acid profiling applied for diagnosis of gastric cancer. Gastroenterology Research and Practice, 2012, 474907.
Gao, H., Dong, B., Liu, X., Xuan, H., Huang, Y., & Lin, D. (2008). Metabonomic profiling of renal cell carcinoma: High-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chimica Acta, 624(2), 269–277.
Giskeødegård, G. F., Bertilsson, H., Selnæs, K. M., Wright, A. J., Bathen, T. F., Viset, T., et al. (2013). Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS ONE, 8(4), e62375.
Giskeødegård, G. F., Hansen, A. F., Bertilsson, H., Gonzalez, S. V., Kristiansen, K. A., Bruheim, P., et al. (2015). Metabolic markers in blood can separate prostate cancer from benign prostatic hyperplasia. British Journal of Cancer, 113(12), 1712–1719.
Gleason, D. (1977). Histologic grading and clinical staging of prostaticcarcinoma. In M. Tannenbaum (Ed.), Urologic pathology: The prostate (pp. 171–198). Philadelphia, PA: Lea and Febiger.
Hanson, B. A. (2014). ChemoSpec: An R Package for Chemometric Analysis of Spectroscopic Data. Package Version 2.0–2.
Heijnsdijk, E. A., de Carvalho, T. M., Auvinen, A., Zappa, M., Nelen, V., Kwiatkowski, M., et al. (2015). Cost-effectiveness of prostate cancer screening: A simulation study based on ERSPC data. Journal of the National Cancer Institute, 107(1), 366.
Hensley, C. T., Wasti, A. T., & DeBerardinis, R. J. (2013). Glutamine and cancer: Cell biology, physiology, and clinical opportunities. The Journal of Clinical Investigation, 123(9), 3678–3684.
Ilic, D., Neuberger, M. M., Djulbegovic, M., & Dahm, P. (2013). Screening for prostate cancer. Cochrane Database of Systematic Reviews (Online), 1, CD004720.
Issaq, H. J., & Veenstra, T. D. (2011). Is sarcosine a biomarker for prostate cancer? Journal of Separation Science, 34(24), 3619–3621.
Jentzmik, F., Stephan, C., Miller, K., Schrader, M., Erbersdobler, A., Kristiansen, G., et al. (2010). Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. European Urology, 58(1), 12–18 (discussion 20–11).
Jiang, Y., Cheng, X., Wang, C., & Ma, Y. (2010). Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Analytical Chemistry, 82(21), 9022–9027.
Ke, C., Hou, Y., Zhang, H., Fan, L., Ge, T., Guo, B., et al. (2015). Large-scale profiling of metabolic dysregulation in ovarian cancer. International Journal of Cancer, 136(3), 516–526.
Khan, A. P., Rajendiran, T. M., Bushra, A., Asangani, I. A., Athanikar, J. N., Yocum, A. K., et al. (2013). The role of sarcosine metabolism in prostate cancer progression. Neoplasia, 15(5), 491–N413.
Kumar, D., Gupta, A., Mandhani, A., & Sankhwar, S. N. (2015). Metabolomics-derived prostate cancer biomarkers: Fact or fiction? Journal of Proteome Research, 14(3), 1455–1464.
Lam, V. W., & Poon, R. T. (2008). Role of branched-chain amino acids in management of cirrhosis and hepatocellular carcinoma. Hepatology Research, 38(Suppl 1), 107–115.
Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M. A., Olmedo, I., Clos, A., Sadagopa Ramanujam, V. M., et al. (2010). Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochemical and Biophysical Research Communications, 393(4), 649–655.
Locasale, J. W. (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature Reviews Cancer, 13(8), 572–583.
Loeb, S., & Partin, A. W. (2011). Review of the literature: PCA3 for prostate cancer risk assessment and prognostication. Reviews in Urology, 13(4), e191–e195.
Lucarelli, G., Fanelli, M., Larocca, A. M., Germinario, C. A., Rutigliano, M., Vavallo, A., et al. (2012). Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/ml. The Prostate, 72(15), 1611–1621.
Masaki, Y., Itoh, K., Sawaki, T., Karasawa, H., Kawanami, T., Fukushima, T., et al. (2006). Urinary pseudouridine in patients with lymphoma: Comparison with other clinical parameters. Clinica Chimica Acta, 371(1–2), 148–151.
McDunn, J. E., Li, Z., Adam, K. P., Neri, B. P., Wolfert, R. L., Milburn, M. V., et al. (2013). Metabolomic signatures of aggressive prostate cancer. The Prostate, 73(14), 1547–1560.
McGregor, M., Hanley, J. A., Boivin, J. F., & McLean, R. G. (1998). Screening for prostate cancer: Estimating the magnitude of overdetection. Canadian Medical Association Journal, 159(11), 1368–1372.
Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. The Review of Scientific Instruments, 29(8), 688–701.
Miyake M, G. G. E., Aguilar Palacios, D., & Rosser, C. J. (2012). Sarcosine, a biomarker for prostate cancer: Ready for prime time? Biomarkers in Medicine, 6(4), 513–514.
Mondul, A. M., Moore, S. C., Weinstein, S. J., Karoly, E. D., Sampson, J. N., & Albanes, D. (2015). Metabolomic analysis of prostate cancer risk in a prospective cohort: The alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. International Journal of Cancer, 137(9), 2124–2132.
Mottet, N., Bellmunt, J., Briers, E., Bolla, M., Cornford, P., De Santis, M., et al. (2016). EAU-ESTRO-SIOG guidelines on prostate cancer. European Association of Urology. doi:10.1016/j.eururo.2016.08.002.
Nicholson, J. K., Foxall, P. J., Spraul, M., Farrant, R. D., & Lindon, J. C. (1995). 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67(5), 793–811.
Nicholson, J. K., Holmes, E., & Wilson, I. D. (2005). Gut microorganisms, mammalian metabolism and personalized health care. Nature Reviews Microbiology, 3(5), 431–438.
O’Connell, T. M. (2013). The complex role of branched chain amino acids in diabetes and cancer. Metabolites, 3(4), 931–945.
Ploussard, G., & de la Taille, A. (2010). Urine biomarkers in prostate cancer. Nature Reviews Urology, 7(2), 101–109.
Rabbani, F., Stroumbakis, N., Kava, B. R., Cookson, M. S., & Fair, W. R. (1998). Incidence and clinical significance of false-negative sextant prostate biopsies. The Journal of Urology, 159(4), 1247–1250.
Rasmuson, T., & Bjork, G. R. (1995). Urinary excretion of pseudouridine and prognosis of patients with malignant lymphoma. Acta Oncologica, 34(1), 61–67.
Roehrborn, C. G., Boyle, P., Gould, A. L., & Waldstreicher, J. (1999). Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology, 53(3), 581–589.
Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V., Hough, T., Cheeseman, M., et al. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiological Genomics, 29(2), 99–108.
Schoenfield, L., Jones, J. S., Zippe, C. D., Reuther, A. M., Klein, E., Zhou, M., et al. (2007). The incidence of high-grade prostatic intraepithelial neoplasia and atypical glands suspicious for carcinoma on first-time saturation needle biopsy, and the subsequent risk of cancer. BJU International, 99(4), 770–774.
Schramm, G., Surmann, E. M., Wiesberg, S., Oswald, M., Reinelt, G., Eils, R., et al. (2010). Analyzing the regulation of metabolic pathways in human breast cancer. BMC Medical Genomics, 3, 39.
Semenza, G. L. (2010). HIF-1: Upstream and downstream of cancer metabolism. Current Opinion in Genetics and Development, 20(1), 51–56.
Spur, E. M., Decelle, E. A., & Cheng, L. L. (2013). Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry. European Journal of Nuclear Medicine and Molecular Imaging, 40(Suppl 1), 60–71.
Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.
Stabler, S., Koyama, T., Zhao, Z., Martinez-Ferrer, M., Allen, R. H., Luka, Z., et al. (2011). Serum methionine metabolites are risk factors for metastatic prostate cancer progression. PLoS ONE, 6(8), e22486.
Struck-Lewicka, W., Kordalewska, M., Bujak, R., Yumba Mpanga, A., Markuszewski, M., Jacyna, J., et al. (2015). Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. Journal of Pharmaceutical and Biomedical Analysis, 111, 351–361.
Szymanska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8(Suppl 1), 3–16.
Tamura, S., Fujioka, H., Nakano, T., Hada, T., & Higashino, K. (1987). Serum pseudouridine as a biochemical marker in small cell lung cancer. Cancer Research, 47(22), 6138–6141.
Thapar, R., & Titus, M. A. (2014). Recent advances in metabolic profiling and imaging of prostate cancer. Current Metabolomics, 2(1), 53–69.
Thomas, R., & Kim, M. H. (2008). HIF-1 alpha: A key survival factor for serum-deprived prostate cancer cells. The Prostate, 68(13), 1405–1415.
Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30(4), 406–410.
Utech, A. E., Tadros, E. M., Hayes, T. G., & Garcia, J. M. (2012). Predicting survival in cancer patients: The role of cachexia and hormonal, nutritional and inflammatory markers. Journal of Cachexia, Sarcopenia and Muscle, 3(4), 245–251.
Vicente-Munoz, S., Morcillo, I., Puchades-Carrasco, L., Paya, V., Pellicer, A., & Pineda-Lucena, A. (2015). Nuclear magnetic resonance metabolomic profiling of urine provides a noninvasive alternative to the identification of biomarkers associated with endometriosis. Fertility and Sterility, 104(5), 1202–1209.
Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K. A., Dommisse, R., Lemiere, F., et al. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405.
Yang, M., Soga, T., & Pollard, P. J. (2013). Oncometabolites: Linking altered metabolism with cancer. The Journal of Clinical Investigation, 123(9), 3652–3658.
Zappa, M., Ciatto, S., Bonardi, R., & Mazzotta, A. (1998). Overdiagnosis of prostate carcinoma by screening: An estimate based on the results of the Florence Screening Pilot Study. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO, 9(12), 1297–1300.
Zaragoza, P., Ruiz-Cerda, J. L., Quintas, G., Gil, S., Costero, A. M., Leon, Z., et al. (2014). Towards the potential use of (1)H NMR spectroscopy in urine samples for prostate cancer detection. The Analyst, 139(16), 3875–3878.
Zhang, A., Yan, G., Han, Y., & Wang, X. (2014). Metabolomics approaches and applications in prostate cancer research. Applied Biochemistry and Biotechnology, 174(1), 6–12.
Zhang, J., Bowers, J., Liu, L., Wei, S., Gowda, G. A., Hammoud, Z., et al. (2012). Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS ONE, 7(1), e30181.
Zhang, T., Watson, D. G., Wang, L., Abbas, M., Murdoch, L., Bashford, L., et al. (2013). Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS ONE, 8(6), e65880.
Zhang, W. C., Shyh-Chang, N., Yang, H., Rai, A., Umashankar, S., Ma, S., et al. (2012). Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell, 148(1–2), 259–272.
Zhang, X., Xu, L., Shen, J., Cao, B., Cheng, T., Zhao, T., et al. (2013). Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica et Biophysica Acta, 1832(8), 1207–1216.
Zira, A. N., Theocharis, S. E., Mitropoulos, D., Migdalis, V., & Mikros, E. (2010). (1)H NMR metabonomic analysis in renal cell carcinoma: A possible diagnostic tool. Journal of Proteome Research, 9(8), 4038–4044.