Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).
McGarraugh, G., Brazg, R. & Weinstein, R. Freestyle Navigator continuous glucose monitoring system with Trustart algorithm, a 1-hour warm-up time. J. Diabetes Sci. Technol. 5, 99–106 (2011).
Mamkin, I., Ten, S., Bhandari, S. & Ramchandani, N. Real-time continuous glucose monitoring in the clinical setting: the good, the bad, and the practical. J. Diabetes Sci. Technol. 2, 882–889 (2008).
Torjman, M. C., Dalal, N. & Goldberg, M. E. Glucose monitoring in acute care: technologies on the horizon. J. Diabetes Sci. Technol. 2, 178–181 (2008).
Burge, M. R., Mitchell, S., Sawyer, A. & Schade, D. S. Continuous glucose monitoring: the future of diabetes management. Diabetes Spectr. 21, 112–119 (2008).
Olarte, O., Chilo, J., Pelegri-Sebastia, J., Barbe, K. & Van Moer, W. Glucose detection in human sweat using an electronic nose. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1462–1465 (2013).
Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11, 566–572 (2016).
Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016).
Yan, Q. et al. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal. Chem. 83, 8341–8346 (2011).
Yao, H., Shum, A. J., Cowan, M., Lähdesmäki, I. & Parviz, B. A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 3290–3296 (2011).
Zhang, W., Du, Y. & Wang, M. L. Noninvasive glucose monitoring using saliva nano-biosensor. Sens. Biosens. Res. 4, 23–29 (2015).
Yeh, S.-J., Hanna, C. F. & Khalil, O. S. Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements. Clin. Chem. 49, 924–934 (2003).
Weinzimer, S. A. Analysis. Pendra: the once and future noninvasive continuous glucose monitoring device? Diabetes Technol. Ther. 6, 442–444 (2004).
Yu, S. et al. In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomed. Opt. Express 5, 275–286 (2014).
Potts, R. O., Tamada, J. A. & Tierney, M. J. Glucose monitoring by reverse iontophoresis. Diabetes Metab. Res. Rev. 18, S49–S53 (2002).
Tierney, M. J. Electrochemical sensor with dual purpose electrode. US patent 5,954,685 (1999).
Sage, B. H. Jr. FDA panel approves Cygnus’s noninvasive GlucoWatch. Diabetes Technol. Ther. 2, 115–116 (2000).
Marro, D., Kalia, Y. N., Delgado-Charro, M. B. & Guy, R. H. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res. 18, 1701–1708 (2001).
Boyne, M. S., Silver, D. M., Kaplan, J. & Saudek, C. D. Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52, 2790–2794 (2003).
Garg, S. K. et al. Correlation of fingerstick blood glucose measurements with GlucoWatch Biographer glucose results in young subjects with type 1 diabetes. Diabetes Care 22, 1708–1714 (1999).
Basu, A. et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 62, 4083–4087 (2013).
Rebrin, K. & Steil, G. M. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Ther. 2, 461–472 (2000).
Wang, P. M., Cornwell, M. & Prausnitz, M. R. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7, 131–141 (2005).
Sieg, A., Guy, R. H. & Delgado-Charro, M. B. Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys. J. 87, 3344–3350 (2004).
Turner, N. G. & Guy, R. H. Visualization and quantitation of iontophoretic pathways using confocal microscopy. J. Invest. Dermatol. Sympos. Proc. 3, 136–142 (1998).
Bath, B. D., White, H. S. & Scott, E. R. Visualization and analysis of electroosmotic flow in hairless mouse skin. Pharm. Res. 17, 471–475 (2000).
Otberg, N. et al. Variations of hair follicle size and distribution in different body sites. J. Invest. Dermatol. 122, 14–19 (2004).
Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).
Alshammari, A. et al. A modular bioplatform based on a versatile supramolecular multienzyme complex directly attached to graphene. Appl. Mater. Interfaces 8, 21077–21088 (2016).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010).
Spasenovic, M. The price of graphene, https://www.graphenea.com/pages/graphene-price (Graphenea, 2013).
Schmook, F. P., Meingassner, J. G. & Billich, A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 215, 51–56 (2001).
Sekkat, N. & Guy, R. H. in Pharmacokinetic Optimization in Drug Research (eds Testa, B. et al.) 155–172 (Wiley-VCH, Lausanne, 2007).
Diabetes UK. Blood sugar level ranges (Diabetes UK, 2017); http://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html
Pauli, G. F., Gödecke, T., Jaki, B. U. & Lankin, D. C. Quantitative 1h NMR. Development and potential of an analytical method: an update. J. Nat. Prod. 75, 834–851 (2012).
Fabry, P. & Fouletier, J. (eds) Chemical and Biological Microsensors: Applications in Fluid Media (Wiley-ISTE, London, 2009).
ICH Harmonised Tripartite Guideline (ICH, Geneva, 2005).
Alegret, S. & Merkoci, A. (eds) Electrochemical Sensor Analysis (Elsevier Science, Amsterdam, 2007).
Tamada, J. A. et al. Noninvasive glucose monitoring: comprehensive clinical results. JAMA 282, 1839–1844 (1999).
Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).
Polk, B. J., Stelzenmuller, A., Mijares, G., MacCrehan, W. & Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuat. B 114, 239–247 (2006).
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Shrivastava, A. G. & Vipin, B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young. Sci. 2, 21–25 (2011).
Alkire, R. C. et al. (eds) Bioelectrochemistry: Fundamentals, Applications and Recent Developmentus (Wiley, Hoboken, NJ, 2011).
Petrucci, R. H. General Chemistry: Principles & Modern Applications 9th edn (Prentice Hall, Upper Saddle River, NJ, 2007).