Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model
Tài liệu tham khảo
Ashcroft, 2012, Diabetes mellitus and the β cell: the last ten years, Cell, 148, 1160, 10.1016/j.cell.2012.02.010
Cho, 2018, IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract., 138, 271, 10.1016/j.diabres.2018.02.023
Sigmundsson, 2018, Culturing functional pancreatic islets on α5-laminins and curative transplantation to diabetic mice, Matrix Biol., 70, 5, 10.1016/j.matbio.2018.03.018
Forbes, 2013, Mechanisms of diabetic complications, Physiol. Rev., 93, 137, 10.1152/physrev.00045.2011
DeFronzo, 2015, Type 2 diabetes mellitus, Nat. Rev. Dis. Primers., 1, 15019, 10.1038/nrdp.2015.19
Yun, 2016, Risk factors and adverse outcomes of severe hypoglycemia in type 2 diabetes mellitus, Diabetes Metab. J., 40, 423, 10.4093/dmj.2016.40.6.423
Chandrasekera, 2014, Of rodents and men: species-specific glucose regulation and type 2 diabetes research, ALTEX, 31, 157, 10.14573/1309231
Schulze, 2017, A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretion coupling in pancreatic islets, Biomed. Microdevices, 19, 47, 10.1007/s10544-017-0186-z
Li, 2017, 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling, Lab Chip, 17, 341, 10.1039/C6LC01201A
Brooks, 2016, Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue, Analyst, 141, 5714, 10.1039/C6AN01055E
Mohammed, 2009, Microfluidic device for multimodal characterization of pancreatic islets, Lab Chip, 9, 97, 10.1039/B809590F
Lee, 2018, Microphysiological analysis platform of pancreatic islet β-cell spheroids, Adv. Healthc. Mater., 7, 1701111, 10.1002/adhm.201701111
Xing, 2016, A pumpless microfluidic device driven by surface tension for pancreatic islet analysis, Biomed. Microdevices, 18, 80, 10.1007/s10544-016-0109-4
MacDonald, 2011, Differences between human and rodent pancreatic islets: low pyruvate carboxylase, ATP citrate lyase and pyruvate carboxylation; high glucose-stimulated acetoacetate in human pancreatic islets, Journal of Biological Chemistry, 286, 18383, 10.1074/jbc.M111.241182
Dolenšek, 2015, Structural similarities and differences between the human and the mouse pancreas, Islets, 7, 10.1080/19382014.2015.1024405
Kaddis, 2009, Human pancreatic islets and diabetes research, Jama, 301, 1580, 10.1001/jama.2009.482
Skelin, 2010, Pancreatic beta cell lines and their applications in diabetes mellitus research, ALTEX, 27, 105, 10.14573/altex.2010.2.105
Benazra, 2015, A human beta cell line with drug inducible excision of immortalizing transgenes, Mol. Metab., 4, 916, 10.1016/j.molmet.2015.09.008
Ricard-Blum, 2018, Molecular and tissue alterations of collagens in fibrosis, Matrix Biol., 68-69, 122, 10.1016/j.matbio.2018.02.004
Ager, 1993, Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition, Phys. Rev. B, 48, 2601, 10.1103/PhysRevB.48.2601
De Beer, 2011, Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes, Int. J. Pharm., 417, 32, 10.1016/j.ijpharm.2010.12.012
Wang, 1990, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2, 557, 10.1021/cm00011a018
Dochow, 2011, Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments, Lab Chip, 11, 1484, 10.1039/c0lc00612b
Freudiger, 2008, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy, Science, 322, 1857, 10.1126/science.1165758
Brauchle, 2014
Marzi, 2019, Marker-independent in situ quantitative assessment of residual cry-oprotectants in cardiac tissues, Anal. Chem., 91, 2266, 10.1021/acs.analchem.8b04861
Brauchle, 2018, Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas, Matrix Biol., 68, 180, 10.1016/j.matbio.2018.03.016
Roman, 2019
Šťovíčková, 2015, Identification of spectral biomarkers for type 1 diabetes mellitus using the combination of chiroptical and vibrational spectroscopy, Analyst, 140, 2266, 10.1039/C4AN01874E
Zou, 2016, Urine surface-enhanced Raman spectroscopy for non-invasive diabetic detection based on a portable Raman spectrometer, Laser Phys. Lett., 13, 10.1088/1612-2011/13/6/065604
Marzi, 2019, Non-invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering, Acta Biomater., 89, 193, 10.1016/j.actbio.2019.03.026
Pudlas, 2011, Non-contact discrimination of human bone marrow-derived mesenchymal stem cells and fibroblasts using Raman spectroscopy, Med. Laser Appl., 26, 119, 10.1016/j.mla.2011.05.004
Tan, 2007, A trap-and-release integrated microfluidic system for dynamic microarray applications, Proc. Natl. Acad. Sci., 104, 1146, 10.1073/pnas.0606625104
Czamara, 2015, Raman spectroscopy of lipids: a review, J. Raman Spectrosc., 46, 4, 10.1002/jrs.4607
Matthäus, 2007, Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy, Biophys. J., 93, 668, 10.1529/biophysj.106.102061
Tang, 2007, NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers, Opt. Express, 15, 12708, 10.1364/OE.15.012708
Klein, 2012, Label-free live-cell imaging with confocal Raman microscopy, Biophys. J., 102, 360, 10.1016/j.bpj.2011.12.027
Notingher, 2004, Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy, J. R. Soc. Interface, 1, 79, 10.1098/rsif.2004.0008
Dukor, 2006
Chen, 2014, Raman spectroscopy analysis of the biochemical characteristics of molecules associated with the malignant transformation of gastric mucosa, PLoS One, 9
Krafft, 2005, Near infrared Raman spectra of human brain lipids, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1529, 10.1016/j.saa.2004.11.017
Stone, 2004, Raman spectroscopy for identification of epithelial cancers, Faraday Discuss., 126, 141, 10.1039/b304992b
Czamara, 2017, Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy, Sci. Rep., 7, 40889, 10.1038/srep40889
Shetty, 2006, Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus, Br. J. Cancer, 94, 1460, 10.1038/sj.bjc.6603102
Huang, 2003, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer, Int. J. Cancer, 107, 1047, 10.1002/ijc.11500
Brazhe, 2015, Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy, Sci. Rep., 5, 13793, 10.1038/srep13793
Dai, 2005, Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air–water interface, Colloids Surf. B: Biointerfaces, 42, 21, 10.1016/j.colsurfb.2004.12.021
Chan, 2006, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J., 90, 648, 10.1529/biophysj.105.066761
Cheng, 2005, Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma, Microsc. Res. Tech., 68, 75, 10.1002/jemt.20229
Hanlon, 2000, Prospects for in vivo Raman spectroscopy, Phys. Med. Biol., 45, R1, 10.1088/0031-9155/45/2/201
Wang, 2017, A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples, Nanoscale, 9, 3496, 10.1039/C6NR09928A
Erjavec, 2016, Raman spectroscopy as a tool for detecting mitochondrial fitness, J. Raman Spectrosc., 47, 933, 10.1002/jrs.4930
Gualerzi, 2017, Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells, Sci. Rep., 7, 9820, 10.1038/s41598-017-10448-1
MacDonald, 2015, Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation, J. Biol. Chem., 290, 11075, 10.1074/jbc.M114.628420
Straub, 2002, Glucose-stimulated signaling pathways in biphasic insulin secretion, Diabetes Metab. Res. Rev., 18, 451, 10.1002/dmrr.329
Lakshmi, 2002, Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice, Radiat. Res., 157, 175, 10.1667/0033-7587(2002)157[0175:TRSFTS]2.0.CO;2
Hilderink, 2013, Label-free detection of insulin and glucagon within human islets of Langerhans using Raman spectroscopy, PLoS One, 8, 10.1371/journal.pone.0078148
Yu, 1972, Laser Raman spectroscopy and the conformation of insulin and proinsulin, J. Mol. Biol., 70, 117, 10.1016/0022-2836(72)90167-2
Gniadecka, 1997, Diagnosis of basal cell carcinoma by Raman spectroscopy, J. Raman Spectrosc., 28, 125, 10.1002/(SICI)1097-4555(199702)28:2/3<125::AID-JRS65>3.0.CO;2-#
Sereda, 2016, Polarized Raman spectroscopy for determining the orientation of di-d-phenylalanine molecules in a nanotube, J. Raman Spectrosc., 47, 1056, 10.1002/jrs.4884
Shao, 2012, In vivo blood glucose quantification using Raman spectroscopy, PLoS One, 7, 10.1371/journal.pone.0048127
Gamsjaeger, 2014, Raman analysis of proteoglycans simultaneously in bone and cartilage, J. Raman Spectrosc., 45, 794, 10.1002/jrs.4552
Rogal, 2019, Stem-cell based organ-on-a-chip models for diabetes research, Adv. Drug Deliv. Rev., 140, 101, 10.1016/j.addr.2018.10.010
Bhatia, 2014, Microfluidic organs-on-chips, Nat. Biotechnol., 32, 760, 10.1038/nbt.2989
Zhao, 2019, Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform, Matrix Biol., 85-86, 189, 10.1016/j.matbio.2019.04.001
Kojima, 2014, In vitro reconstitution of pancreatic islets, Organogenesis, 10, 225, 10.4161/org.28351
Ichihara, 2016, Size effect of engineered islets prepared using microfabricated wells on islet cell function and arrangement, Heliyon, 2, 10.1016/j.heliyon.2016.e00129
Henquin, 2015, Dynamics of glucose-induced insulin secretion in normal human islets, Am. J. Physiol. Endocrinol. Metab., 309, E640, 10.1152/ajpendo.00251.2015
Leibiger, 2008, Insulin signaling in the pancreatic β-cell, Annu. Rev. Nutr., 28, 233, 10.1146/annurev.nutr.28.061807.155530
Velazco-Cruz, 2019, Acquisition of dynamic function in human stem cell-derived β cells, Stem Cell Rep., 12, 351, 10.1016/j.stemcr.2018.12.012
Nourmohammadzadeh, 2016, A microfluidic array for real-time live-cell imaging of human and rodent pancreatic islets, Lab Chip, 16, 1466, 10.1039/C5LC01173F
Maechler, 2000, Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell, J. Physiol., 529, 49, 10.1111/j.1469-7793.2000.00049.x
Kibbey, 2007, Mitochondrial GTP regulates glucose-stimulated insulin secretion, Cell Metab., 5, 253, 10.1016/j.cmet.2007.02.008
Maechler, 2006, In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion, Int. J. Biochem. Cell Biol., 38, 696, 10.1016/j.biocel.2005.12.006
Cho, 2018, Surface-enhanced Raman spectroscopy-based label-free insulin detection at physiological concentrations for analysis of islet performance, ACS Sensors, 3, 65, 10.1021/acssensors.7b00864
Fodor, 1989, Deep-ultraviolet Raman excitation profiles and vibronic scattering mechanisms of phenylalanine, tyrosine, and tryptophan, J. Am. Chem. Soc., 111, 5509, 10.1021/ja00197a001
Rogal, 2017, Integration concepts for multi-organ chips: how to maintain flexibility?!, Future Sci. OA, 3, 10.4155/fsoa-2016-0092
Esch, 2014, How multi-organ microdevices can help foster drug development, Adv. Drug Deliv. Rev., 69, 158, 10.1016/j.addr.2013.12.003
Rogal, 2019, WAT's up!?–Organ-on-a-chip integrating human mature white adipose tissues for mechanistic research and pharmaceutical applications, bioRxiv
Rennert, 2015, A microfluidically perfused three dimensional human liver model, Biomaterials, 71, 119, 10.1016/j.biomaterials.2015.08.043
Soscia, 2017, Controlled placement of multiple CNS cell populations to create complex neuronal cultures, PLoS One, 12, 10.1371/journal.pone.0188146
Ringer, 2017, Sensing the mechano-chemical properties of the extracellular matrix, Matrix Biol., 64, 6, 10.1016/j.matbio.2017.03.004
Kim, 2017, Compression-induced structural and mechanical changes of fibrin-collagen composites, Matrix Biol., 60-61, 141, 10.1016/j.matbio.2016.10.007
Cruz-Acuña, 2017, Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions, Matrix Biol., 57-58, 324, 10.1016/j.matbio.2016.06.002
Haak, 2018, Matrix biomechanics and dynamics in pulmonary fibrosis, Matrix Biol., 73, 64, 10.1016/j.matbio.2017.12.004
Chester, 2017, The role of biophysical properties of provisional matrix proteins in wound repair, Matrix Biol., 60-61, 124, 10.1016/j.matbio.2016.08.004
Lock, 2011, Pseudoislets in stirred-suspension culture exhibit enhanced cell survival, propagation and insulin secretion, J. Biotechnol., 51, 278, 10.1016/j.jbiotec.2010.12.015
