Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization

Phytochemistry - Tập 113 - Trang 140-148 - 2015
Herana Kamal Seneviratne1, Doralyn S. Dalisay1, Kye‐Won Kim1, S.G.A. Moinuddin1, Hong Yang1, Christopher M. Hartshorn1, Laurence B. Davin1, Norman Lewis2
1Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340 USA
2Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA. Electronic address: [email protected].

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atkins, 1977, Photosynthetic pod wall of pea (Pisum sativum L.): distribution of carbon dioxide-fixing enzymes in relation to pod structure, Plant Physiol., 60, 779, 10.1104/pp.60.5.779

Banks, 1983, Biosynthesis of pisatin: experiments with enantiomeric precursors, Phytochemistry, 22, 1591, 10.1016/0031-9422(83)80094-6

Bednarek, 2009, Plant-microbe interactions: chemical diversity in plant defense, Science, 324, 746, 10.1126/science.1171661

Bednarek, 2005, Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots, Plant Physiol., 138, 1058, 10.1104/pp.104.057794

Hwang, 2010, Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii, Molecules, 15, 3507, 10.3390/molecules15053507

Celoy, 2014, (+)-Pisatin biosynthesis: from (−) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′,5′-methylenedioxyisoflav-3-ene, Phytochemistry, 98, 120, 10.1016/j.phytochem.2013.10.017

Choi, 2001, A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death, Plant Physiol., 125, 752, 10.1104/pp.125.2.752

Chu, 1993, Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia, J. Biol. Chem., 268, 27026, 10.1016/S0021-9258(19)74213-6

Churngchow, 2001, Biosynthesis of scopoletin in Hevea brasiliensis leaves inoculated with Phytophthora palmivora, J. Plant Physiol., 158, 875, 10.1078/0176-1617-00230

Cruickshank, 1963, Studies on phytoalexins. VI. Pisatin: the effect of some factors on its formation in Pisum sativum L., and the significance of pisatin in disease resistance, Aust. J. Biol. Sci., 16, 111, 10.1071/BI9630111

Culley, 1995, Molecular characterization of disease-resistance response gene DRR206-d from Pisum sativum (L.), Plant Physiol., 107, 301, 10.1104/pp.107.1.301

Davin, 2000, Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis, Plant Physiol., 123, 453, 10.1104/pp.123.2.453

Davin, 2005, Lignin primary structures and dirigent sites, Curr. Opin. Biotechnol., 16, 407, 10.1016/j.copbio.2005.06.011

Davin, 1997, Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center, Science, 275, 362, 10.1126/science.275.5298.362

DiCenzo, 2006, Studies on the late steps of (+)-pisatin biosynthesis: evidence for (−)-enantiomeric intermediates, Phytochemistry, 67, 675, 10.1016/j.phytochem.2005.12.027

Dixon, 2001, Natural products and plant disease resistance, Nature, 411, 843, 10.1038/35081178

Dixon, 2010, Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience, Plant Physiol., 154, 453, 10.1104/pp.110.161430

Fristensky, 1988, cDNA sequences for pea disease resistance response genes, Plant Mol. Biol., 11, 713, 10.1007/BF00017470

Fristensky, 1985, Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan, Physiol. Plant Pathol., 27, 15, 10.1016/0048-4059(85)90053-0

Gang, 1999, Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis, Chem. Biol., 6, 143, 10.1016/S1074-5521(99)89006-1

Hadwiger, 1966, The biosynthesis of pisatin, Phytochemistry, 5, 523, 10.1016/S0031-9422(00)82167-6

Hadwiger, 2008, Pea–Fusarium solani interactions. Contributions of a system toward understanding disease resistance, Phytopathology, 98, 372, 10.1094/PHYTO-98-4-0372

Hadwiger, 1995, Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity, and pisatin production, Mol. Plant-Microbe Interact., 8, 871, 10.1094/MPMI-8-0871

Halkier, 2006, Biology and biochemistry of glucosinolates, Annu. Rev. Plant Biol., 57, 303, 10.1146/annurev.arplant.57.032905.105228

Halls, 2004, Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein, Biochemistry, 43, 2587, 10.1021/bi035959o

Halls, 2002, Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein, Biochemistry, 41, 9455, 10.1021/bi0259709

Hammerschmidt, 1999, Phytoalexins: what have we learned after 60years?, Annu. Rev. Phytopathol., 37, 285, 10.1146/annurev.phyto.37.1.285

Harborne, 1994

Harborne, 2000, Advances in flavonoid research since 1992, Phytochemistry, 55, 481, 10.1016/S0031-9422(00)00235-1

Hosmani, 2013, Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root, Proc. Natl. Acad. Sci. U.S.A., 110, 14498, 10.1073/pnas.1308412110

Kim, 2012, Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species, J. Biol. Chem., 287, 33957, 10.1074/jbc.M112.387423

Lankau, 2007, Specialist and generalist herbivores exert opposing selection on a chemical defense, New Phytol., 175, 176, 10.1111/j.1469-8137.2007.02090.x

Lankau, 2007, Mutual feedbacks maintain both genetic and species diversity in a plant community, Science, 317, 1561, 10.1126/science.1147455

Nakatsubo, 2008, Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis, J. Biol. Chem., 283, 15550, 10.1074/jbc.M801131200

Pickel, 2010, An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols, Angew. Chem. Int. Ed. Engl., 49, 202, 10.1002/anie.200904622

Riggleman, 1985, The disease resistance response in pea is associated with increased levels of specific mRNAs, Plant Mol. Biol., 4, 81, 10.1007/BF02418753

Smith, 1996, Accumulation of phytoalexins: defence mechanism and stimulus response system, New Phytol., 132, 1, 10.1111/j.1469-8137.1996.tb04506.x

Teasdale, 1974, Physiological and cytological similarities between disease resistance and cellular incompatibility responses, Plant Physiol., 54, 690, 10.1104/pp.54.5.690

VanEtten, 1994, Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”, Plant Cell, 6, 1191, 10.2307/3869817

Vassão, 2010, Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations, vol. 1, 815

Vermes, 1991, Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)- mono- and bis-glucosides, Phytochemistry, 30, 3087, 10.1016/S0031-9422(00)98258-X

Wang, 2001, Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani, Mol. Breed., 8, 263, 10.1023/A:1013706400168

Yamamoto, 2010, Gas chromatography/mass spectrometry of the lignans in resin of Callitris preissii, J. Mass Spectrom. Soc. Jpn., 58, 195, 10.5702/massspec.58.195

Zook, 1997, Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana, Plant Physiol., 113, 463, 10.1104/pp.113.2.463

Züst, 2012, Natural enemies drive geographic variation in plant defenses, Science, 338, 116, 10.1126/science.1226397