Non‐fragile sliding mode control of discrete switched singular systems with time‐varying delays

IET Control Theory and Applications - Tập 14 Số 5 - Trang 726-737 - 2020
Yueqiao Han1, Chun‐Yi Su2, Yonggui Kao3, Cunchen Gao1
1School of Mathematical Science, Ocean University of China, Qingdao, 266100 People's Republic of China
2Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G1M8 Canada
3Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai, 264209, People’s Republic of China

Tóm tắt

This study tends to solve the finite‐time boundedness (FTB) problems for discrete switched singular systems with time‐varying delays via a non‐fragile sliding mode approach. The remarkable feature of the provided method is that a new sliding surface function is constructed such that a full‐order dynamic system is acquired. Thus, a non‐fragile sliding mode controller can be proposed to guarantee the FTB of the dynamic system. Therein, by employing the multiple Lyapunov‐like functions and dwell time (DT) method, sufficient conditions and the DT of switching signal are given to ensure the FTB of the sliding mode dynamics. These results are then applied to the FTB issue, being expressed as a solvable optimisation problem. Furthermore, by employing a discrete reaching condition, the proposed sliding mode controller can guarantee the reachability of the quasi‐sliding mode. The validity of the proposed theorems is verified through a numerical example.

Từ khóa


Tài liệu tham khảo

10.1049/iet-cta.2013.1013

10.1109/TSMC.2017.2758381

10.1002/asjc.1621

10.1049/iet-cta.2018.6119

10.1080/00207721.2016.1216200

10.1049/iet-cta.2010.0242

10.1016/j.automatica.2016.10.001

10.1016/j.isatra.2018.05.023

10.1049/iet-cta.2017.0048

10.1109/37.793443

10.1049/iet-cta.2017.0907

10.1016/j.jfranklin.2010.12.001

10.1016/j.cnsns.2012.05.002

10.1049/iet-cta.2018.5287

10.1049/iet-cta.2017.1058

10.1016/j.jfranklin.2013.01.018

10.1016/S0005-1098(01)00087-5

10.1007/s12555-016-0570-0

10.1109/ACC.2009.5160108

10.1016/j.automatica.2012.02.045

10.1007/s00034-018-0747-2

10.1016/j.jfranklin.2018.10.031

10.1016/j.ins.2016.04.013

10.1049/iet-cta.2013.0028

10.1016/j.amc.2015.03.111

10.1109/TAC.2019.2913050

10.1049/iet-cta.2013.1142

10.1016/j.jfranklin.2018.10.018

10.1080/00207721.2014.886134

10.1016/j.physleta.2008.09.030

10.1002/rnc.4477

10.1007/s11071-012-0687-5

10.1002/rnc.3970

10.1109/TSMC.2016.2613885

10.1016/j.sigpro.2017.02.010

10.1109/9.135513

10.1016/j.automatica.2017.12.033

10.1109/TCYB.2018.2805167

10.1080/00207179.2014.996854

10.1016/S0096-3003(02)00962-1

10.1016/j.cnsns.2012.08.014

10.1109/TCYB.2018.2874166

10.1016/j.neucom.2017.02.091

10.1049/iet-cta.2016.0862

10.1109/TAC.2016.2626398