Non-destructive micro-Raman analysis of Si near Cu through silicon via
Tóm tắt
Silicon near Cu through-silicon vias (TSVs) develops stresses during processing steps, and the local stress of Si around Cu TSVs of sizes ranging from 4 to 8 μm was characterized using micro-Raman spectroscopy as a function of processing steps. Micro-Raman measurements showed that the max stress sum, σ
r + σ
θ, is size dependent, where the stress sum of 88.7 MPa in the compressive direction was measured in Si for 8 μm sized Cu via, and this max stress sum, σ
r + σ
θ, decreased to 21 MPa in compression for 4 μm sized Cu via. With the deposition of oxide/nitride overlayers, the stress sum was found to switch sign to 138.9 MPa in the tensile direction for 8 μm sized Cu via after deposition of the SiN overlayers with residual compressive stress caused by ion bombardment. The measured stresses by micro-Raman was used to determine the keep-off-zone that can be used in device design to ensure reliability, and compared against the TCAD simulations results.
Tài liệu tham khảo
B. Hoefflinger, CHIPS 2020 VOL. 2, p. 143, Springer International Publishing, Switzerland (2016).
A. Pizzagalli, T. Buisson, and R. Beica, 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), p. 78, IEEE, New York, USA (2014).
A. Sharma, D. H. Jung, M. H. Roh, and J. P. Jung, Electron. Mater. Lett. 12, 856 (2016).
S. K. Lin, H. M. Chang, C. L. Cho, Y. C. Liu, and Y. K. Kuo, Electron. Mater. Lett. 11, 687 (2015).
B. Wu and A. Kumar, Appl. Phys. Rev. 1, 011104 (2014).
C. Zhang, M. Jung, S. K. Lim, and Y. Shi, Proceedings of the International Conference on Computer-Aided Design, p. 371, IEEE Press, San Jose, USA (2013).
A. P. Karmarkar, X. Xu, and V. Moroz, 2009 IEEE International Reliability Physics Symposium, p. 682, IEEE, Montreal, Canada (2009).
A. P. Karmarkar, X. Xu, S. Ramaswami, J. Dukovic, K. Sapre, and A. Bhatnagar, MRS Proceedings, p. 1249-F09-08, Cambridge Univ Press, San Francisco, USA (2010).
S.-K. Ryu, K. H. Lu, T. Jiang, J.-H. Im, R. Huang, and P. S. Ho, IEEE T. Device Mat. Re. 12, 255 (2012).
M.-Y. Tsai, P. S. Huang, C.-Y. Huang, H. Jao, B. Huang, B. Wu, Y.-Y. Lin, W. Liao, J. Huang, and L. Huang, IEEE T. Electron Dev. 60, 2331 (2013).
S. Van Huylenbroeck, Y. Li, N. Heylen, K. Croes, G. Beyer, E. Beyne, M. Brouri, S. Gopinath, P. Nalla, and M. Thorum, 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), p. 66, IEEE, Florida, USA (2015).
A. D. Trigg, L. H. Yu, C. K. Cheng, R. Kumar, D. L. Kwong, T. Ueda, T. Ishigaki, K. Kang, and W. S. Yoo, Appl. Phys. Express 3, 086601 (2010).
W. S. Yoo, K. Kang, T. Ueda, and T. Ishigaki, Appl. Phys. Express 2, 116502 (2009).
S. Yoo, J. H. Kim, and S. M. Han, J. Micro-Nanolith. MEM. 13, 011205 (2014).
A. Budiman, H.-A.-S. Shin, B.-J. Kim, S.-H. Hwang, H.-Y. Son, M.-S. Suh, Q.-H. Chung, K.-Y. Byun, N. Tamura, M. Kunz, and Y.-C. Joo Microelectron. Reliab. 52, 530 (2012).
W. Kwon, D. Alastair, K. Teo, S. Gao, T. Ueda, T. Ishigaki, K. Kang, and W. Yoo, Appl. Phys. Lett. 98, 232106 (2011).
X. Liu, P. Thadesar, C. Taylor, M. Kunz, N. Tamura, M. Bakir, and S. Sitaraman, Appl. Phys. Lett. 103, 022107 (2013).
C. E. Murray, T. Graves-Abe, R. Robison, and Z. Cai, Appl. Phys. Lett. 102, 251910 (2013).
S.-K. Ryu, T. Jiang, K. H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, and P. S. Ho, Appl. Phys. Lett. 100, 041901 (2012).
J.-C. Bea, M. Murugesan, Y. Ohara, A. Noriki, H. Kino, K.-W. Lee, T. Fukushima, T. Tanaka, and M. Koyanagi, 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on, p. 1, IEEE, San Francisco, USA (2009).
S.-K. Ryu, Q. Zhao, M. Hecker, H.-Y. Son, K.-Y. Byun, J. Im, P. S. Ho, and R. Huang, J. Appl. Phys. 111, 063513 (2012).
M. Kada, ECS Trans. 64, 1 (2015).
S. Chen, F. Qin, J. Zhao, and T. An, Electronic Packaging Technology (ICEPT), 2016 17th International Conference on, p. 1095, IEEE, Wuhan, China (2016).
A. Heryanto, W. Putra, A. Trigg, S. Gao, W. Kwon, F. Che, X. Ang, J. Wei, R. I. Made, and C. L. Gan, J. Electron. Mater. 41, 2533 (2012).
C. Okoro, L. E. Levine, R. Xu, K. Hummler, and Y. Obeng, J. Appl. Phys. 115, 243509 (2014).
H. Jin, J. Cai, Q. Wang, Y. Hu, and Z. Liu, Electronic Packaging Technology (ICEPT), 2016 17th International Conference on, p. 1064, IEEE, Wuhan, China (2016).
K. Mackenzie, D. Johnson, M. DeVre, R. Westerman, and B. Reelfs, 207th Electrochemical Society Meeting, p. 148, Electrochemical Society, Quebec, Canada (2005).
A. Danilewsky, J. Wittge, K. Kiefl, D. Allen, P. McNally, J. Garagorri, M. R. Elizalde, T. Baumbach, and B. K. Tanner, J. Appl. Crystallogr. 46, 849 (2013).
T. Jiang, C. Wu, L. Spinella, J. Im, N. Tamura, M. Kunz, H.-Y. Son, B. G. Kim, R. Huang, and P. S. Ho, Appl. Phys. Lett. 103, 211906 (2013).
M. Hecker, L. Zhu, C. Georgi, I. Zienert, J. Rinderknecht, H. Geisler, and E. Zschech, Characterization and Metrology for Nanoelectronics: 2007 International Conference on Frontiers of Characterization and Metrology, p. 435, AIP Publishing, Gaithersburg, USA (2007).
M. A. Rabie, C. Premachandran, R. Ranjan, M. I. Natarajan, S. F. Yap, D. Smith, S. Thangaraju, R. Alapati, and F. Benistant, IEEE International Interconnect Technology Conference, p. 203, IEEE, San Jose, USA (2014).
X. Xu, A. Karmarkar, E. Zschech, R. Radojcic, V. Sukharev, and L. Smith, Stress Management for 3D ICS Using Through Silicon Vias-AIP Conference Proceedings, p. 53, American Institute of Physics, San Jose, USA (2011).
M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. Microelectromech. Syst. 19, 229 (2010).
S. K. Ryu, K. H. Lu, X. Zhang, J. H. Im, P. S. Ho, and R. Huang, IEEE T. Device Mat. Re. 11, 35 (2011).