Non-commutative circuits and the sum-of-squares problem

Journal of the American Mathematical Society - Tập 24 Số 3 - Trang 871-898
Pavel Hrubeš1,2,3, Avi Wigderson1,2,3, Amir Yehudayoff1,2,3
1Department of Computer Science, University of Calgary, Alberta T2N 1N4, Canada
2Department of Mathematics, Technion-IIT, Haifa 32000, Israel
3School of Mathematics, Institute for Advanced Study, Princeton, New Jersey, 08540

Tóm tắt

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of non-commutative arithmetic circuits and a problem about commutative degree-four polynomials, the classical sum-of-squares problem: find the smallest n n such that there exists an identity ( 0.1 ) ( x 1 2 + x 2 2 + + x k 2 ) ( y 1 2 + y 2 2 + + y k 2 ) = f 1 2 + f 2 2 + + f n 2 , \begin{equation*} (0.1)\quad \quad (x_1^2+x_2^2+\cdots + x_k^2)\cdot (y_1^2+y_2^2+\cdots + y_k^2)= f_{1}^{2}+f_{2}^{2}+\dots +f_{n}^{2} , \quad \quad \end{equation*} where each f i = f i ( X , Y ) f_{i} = f_i(X,Y) is a bilinear form in X = { x 1 , , x k } X=\{x_{1},\dots ,x_{k}\} and Y = { y 1 , , y k } Y=\{y_{1},\dots , y_{k}\} . Over the complex numbers, we show that a sufficiently strong superlinear lower bound on n n in (0.1), namely, n k 1 + ϵ n\geq k^{1+\epsilon } with ϵ > 0 \epsilon >0 , implies an exponential lower bound on the size of arithmetic circuits computing the non-commutative permanent.

More generally, we consider such sum-of-squares identities for any biqua- dratic polynomial h ( X , Y ) h(X,Y) , namely ( 0.2 ) h ( X , Y ) = f 1 2 + f 2 2 + + f n 2 . \begin{equation*} (0.2) \quad \quad \qquad \quad \quad \quad \quad h(X,Y) = f_{1}^{2}+f_{2}^{2}+\dots +f_{n}^{2} . \quad \quad \qquad \quad \quad \quad \quad \end{equation*} Again, proving n k 1 + ϵ n\geq k^{1+\epsilon } in (0.2) for any explicit h h over the complex numbers gives an exponential lower bound for the non-commutative permanent. Our proofs rely on several new structure theorems for non-commutative circuits, as well as a non-commutative analog of Valiant’s completeness of the permanent.

We prove such a superlinear bound in one special case. Over the real numbers, we construct an explicit biquadratic polynomial h h such that n n in (0.2) must be at least Ω ( k 2 ) \Omega (k^{2}) . Unfortunately, this result does not imply circuit lower bounds. We also present other structural results about non-commutative arithmetic circuits. We show that any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential lower bound on the size of a non-commutative syntactically multilinear circuit computing an explicit polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does not follow.

Từ khóa


Tài liệu tham khảo

V. Arvind and S. Srinivasan. On the hardness of the noncommutative determinant. STOC 10’, pages 677-686, 2010.

Barvinok, Alexander, 1999, Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor, Random Structures Algorithms, 14, 29, 10.1002/(SICI)1098-2418(1999010)14:1<29::AID-RSA2>3.0.CO;2-X

Baur, Walter, 1983, The complexity of partial derivatives, Theoret. Comput. Sci., 22, 317, 10.1016/0304-3975(83)90110-X

Bürgisser, Peter, 2000, Completeness and reduction in algebraic complexity theory, 7, 10.1007/978-3-662-04179-6

Chien, Steve, 2007, Algebras with polynomial identities and computing the determinant, SIAM J. Comput., 37, 252, 10.1137/S0097539705447359

Chien, Steve, 2002, Clifford algebras and approximating the permanent, 222, 10.1145/509907.509944

von zur Gathen, Joachim, 1988, Algebraic complexity theory, 317

Godsil, C. D., 1981, On the matching polynomial of a graph, 241

Hyafil, Laurent, 1979, On the parallel evaluation of multivariate polynomials, SIAM J. Comput., 8, 120, 10.1137/0208010

P. Hrubeš, A. Wigderson and A. Yehudayoff. An asymptotic bound on composition number of integer sums of squares formulas. To appear in Canadian Mathematical Bulletin.

P. Hrubeš and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. Comput. Complex., to appear.

P. Hrubeš, A. Wigderson and A. Yehudayoff. Relationless completeness and separations. CCC 10’, pages 280–290, 2010.

A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309–316, 1898.

Hurwitz, A., 1922, Über die Komposition der quadratischen Formen, Math. Ann., 88, 1, 10.1007/BF01448439

James, I. M., 1963, On the immersion problem for real projective spaces, Bull. Amer. Math. Soc., 69, 231, 10.1090/S0002-9904-1963-10930-1

Jerrum, Mark, 2004, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries, J. ACM, 51, 671, 10.1145/1008731.1008738

S. Jukna. Boolean function complexity: advances and frontiers. Book in preparation.

Karmarkar, N., 1993, A Monte Carlo algorithm for estimating the permanent, SIAM J. Comput., 22, 284, 10.1137/0222021

T. Kirkman. On pluquatemions, and horaoid products of sums of 𝑛 squares. Philos. Mag. (ser. 3), 33, pages 447–459; 494-509, 1848.

Lam, Kee Yuen, 1985, Some new results on composition of quadratic forms, Invent. Math., 79, 467, 10.1007/BF01388517

Lam, T. Y., 1993, On Yuzvinsky’s monomial pairings, Quart. J. Math. Oxford Ser. (2), 44, 215, 10.1093/qmath/44.2.215

K. Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Riemann Hypothesis. Technical Report, Computer Science Department, The University of Chicago, 2009.

N. Nisan. Lower bounds for non-commutative computation. STOC 91’, pages 410–418, 1991.

Nisan, Noam, 1996, Lower bounds on arithmetic circuits via partial derivatives, Comput. Complexity, 6, 217, 10.1007/BF01294256

Pfister, Albrecht, 1967, Zur Darstellung definiter Funktionen als Summe von Quadraten, Invent. Math., 4, 229, 10.1007/BF01425382

J. Radon. Lineare Scharen orthogonalen Matrizen. Abh. Math. Sem. Univ. Hamburg 1, pages 2–14, 1922.

Raz, Ran, 2004, Multi-linear formulas for permanent and determinant are of super-polynomial size, 633, 10.1145/1007352.1007353

Raz, Ran, 2008, Elusive functions and lower bounds for arithmetic circuits, 711, 10.1145/1374376.1374479

Raz, Ran, 2008, Lower bounds and separations for constant depth multilinear circuits, 128, 10.1109/CCC.2008.8

Raz, Ran, 2008, A lower bound for the size of syntactically multilinear arithmetic circuits, SIAM J. Comput., 38, 1624, 10.1137/070707932

Shapiro, Daniel B., 2000, Compositions of quadratic forms, 33, 10.1515/9783110824834

Strassen, Volker, 1972, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numer. Math., 20, 238, 10.1007/BF01436566

Strassen, Volker, 1973, Vermeidung von Divisionen, J. Reine Angew. Math., 264, 184

Tiwari, Prasoon, 1994, A direct version of Shamir and Snir’s lower bounds on monotone circuit depth, Inform. Process. Lett., 49, 243, 10.1016/0020-0190(94)90061-2

Valiant, L. G., 1979, Completeness classes in algebra, 249

Winograd, Shmuel, 1970, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math., 23, 165, 10.1002/cpa.3160230204

Yiu, Paul Y. H., 1987, Sums of squares formulae with integer coefficients, Canad. Math. Bull., 30, 318, 10.4153/CMB-1987-045-6

Yiu, Paul Y. H., 1990, On the product of two sums of 16 squares as a sum of squares of integral bilinear forms, Quart. J. Math. Oxford Ser. (2), 41, 463, 10.1093/qmath/41.4.463

Yuzvinsky, Sergey, 1984, A series of monomial pairings, Linear and Multilinear Algebra, 15, 109, 10.1080/03081088408817582