Non-coding RNA therapeutics in cardiovascular diseases and risk factors: Systematic review
Tài liệu tham khảo
Vaduganathan, 2022, The global burden of cardiovascular diseases and risk, J. Am. Coll. Cardiol., 80, 2361, 10.1016/j.jacc.2022.11.005
Boada, 2021, RNA therapeutics for cardiovascular disease, Curr. Opin. Cardiol., 36, 256, 10.1097/HCO.0000000000000850
Lucas, 2018, RNA therapeutics in cardiovascular disease, Circ. Res., 123, 205, 10.1161/CIRCRESAHA.117.311311
Laina, 2018, RNA therapeutics in cardiovascular precision medicine, Front. Physiol., 9, 953, 10.3389/fphys.2018.00953
Quemener, 2020, The powerful world of antisense oligonucleotides: from bench to bedside, Wiley Interdiscip Rev RNA, 11, e1594, 10.1002/wrna.1594
Chen, 2022, Aptamer-based applications for cardiovascular disease, Front. Bioeng. Biotechnol., 10
Zhou, 2020, Evidence for inflammation as a driver of atrial fibrillation, Front Cardiovasc Med, 7, 62, 10.3389/fcvm.2020.00062
Thomas, 2013, Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial, J. Am. Coll. Cardiol., 62, 2178, 10.1016/j.jacc.2013.07.081
Raal, 2020, Inclisiran for the treatment of heterozygous familial hypercholesterolemia, N. Engl. J. Med., 382, 1520, 10.1056/NEJMoa1913805
Shen, 2018, Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs, Nucleic Acids Res., 46, 1584, 10.1093/nar/gkx1239
2022, Lipid and lipoprotein metabolism, Endocrinol Metab. Clin. N. Am., 51, 437, 10.1016/j.ecl.2022.02.008
Helkin, 2016, Dyslipidemia Part 1–review of lipid metabolism and vascular cell physiology, Vasc. Endovasc. Surg., 50, 107, 10.1177/1538574416628654
Behbodikhah, 2021, Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target, Metabolites, 11
Yang, 2016, Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results1, J. Lipid Res., 57, 706, 10.1194/jlr.M066399
Furtado, 2012, Antisense inhibition of apoB synthesis with mipomersen reduces plasma apoC-III and apoC-III-containing lipoproteins, J. Lipid Res., 53, 784, 10.1194/jlr.P021717
Reeskamp, 2018, A deep intronic variant in LDLR in familial hypercholesterolemia, Circ Genom Precis Med, 11, 10.1161/CIRCGEN.118.002385
Chambergo-Michilot, 2022, Mipomersen in familial hypercholesterolemia: an update on health-related quality of life and patient-reported outcomes, Vasc. Health Risk Manag., 18, 73, 10.2147/VHRM.S191965
Santos, 2015, Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials, Arterioscler. Thromb. Vasc. Biol., 35, 689, 10.1161/ATVBAHA.114.304549
Waldmann, 2017, Effect of mipomersen on LDL-cholesterol in patients with severe LDL-hypercholesterolaemia and atherosclerosis treated by lipoprotein apheresis (The MICA-Study), Atherosclerosis, 259, 20, 10.1016/j.atherosclerosis.2017.02.019
Tanaka, 2021, Serum high-sensitivity C-reactive protein levels and the risk of atrial fibrillation in Japanese population: the circulatory risk in communities study, J. Atherosclerosis Thromb., 28, 194, 10.5551/jat.54064
Lee, 2019, Single and persistent elevation of C-reactive protein levels and the risk of atrial fibrillation in a general population: the Ansan-Ansung Cohort of the Korean Genome and Epidemiology Study, Int. J. Cardiol., 277, 240, 10.1016/j.ijcard.2018.10.070
Sugihara, 2015, The effect of C-reactive protein reduction with a highly specific antisense oligonucleotide on atrial fibrillation assessed using beat-to-beat pacemaker Holter follow-up, J. Intervent. Card Electrophysiol., 43, 91, 10.1007/s10840-015-9986-3
Noveck, 2014, Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers, J. Am. Heart Assoc., 3
Büller, 2015, Factor XI antisense oligonucleotide for prevention of venous thrombosis, N. Engl. J. Med., 372, 232, 10.1056/NEJMoa1405760
Benson, 2017, Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy, Amyloid, 24, 219
Benson, 2019, Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis, Neurodegener. Dis. Manag., 9, 25, 10.2217/nmt-2018-0037
Tanskanen, 2008, Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study, Ann. Med., 40, 232, 10.1080/07853890701842988
Ioannou, 2023, RNA targeting and gene editing strategies for transthyretin amyloidosis, BioDrugs, 37, 127, 10.1007/s40259-023-00577-7
Arruda-Olson, 2013, Genotype, echocardiography, and survival in familial transthyretin amyloidosis, Amyloid, 20, 263, 10.3109/13506129.2013.845745
Benson, 2018, Inotersen treatment for patients with hereditary transthyretin amyloidosis, N. Engl. J. Med., 379, 22, 10.1056/NEJMoa1716793
Dasgupta, 2020, Inotersen therapy of transthyretin amyloid cardiomyopathy, Amyloid, 27, 52, 10.1080/13506129.2019.1685487
Luigetti, 2022, Real-life experience with inotersen in hereditary transthyretin amyloidosis with late-onset phenotype: data from an early-access program in Italy, Eur. J. Neurol., 29, 2148, 10.1111/ene.15325
Viney, 2021, Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data, ESC Heart Fail., 8, 652, 10.1002/ehf2.13154
Zhu, 2018, Aptamer-based targeted therapy, Adv. Drug Deliv. Rev., 134, 65, 10.1016/j.addr.2018.08.005
Staudacher, 2019, Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes, Eur Heart J Acute Cardiovasc Care, 8, 520, 10.1177/2048872617703065
Yeung, 2012, Newer agents in antiplatelet therapy: a review, Hematol. Res. Rev., 3, 33
Li, 2014, Development of aptamer oligonucleotides as anticoagulants and antithrombotics for cardiovascular diseases: current status, Thromb. Res., 134, 769, 10.1016/j.thromres.2014.05.021
Arzamendi, 2011, An anti-von Willebrand factor aptamer reduces platelet adhesion among patients receiving aspirin and clopidogrel in an ex vivo shear-induced arterial thrombosis, Clin. Appl. Thromb. Hemost., 17, E70, 10.1177/1076029610384114
Povsic, 2013, A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial, Eur. Heart J., 34, 2481, 10.1093/eurheartj/ehs232
Cohen, 2010, First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous coronary intervention, Circulation, 122, 614, 10.1161/CIRCULATIONAHA.109.927756
Chan, 2008, Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease, Circulation, 117, 2865, 10.1161/CIRCULATIONAHA.107.745687
Hu, 2020, Therapeutic siRNA: state of the art, Signal Transduct. Targeted Ther., 5, 101, 10.1038/s41392-020-0207-x
Dana, 2017, Molecular mechanisms and biological functions of siRNA, Int. J. Biomed. Sci., 13, 48, 10.59566/IJBS.2017.13048
Nissen, 2022, Single ascending dose study of a short interfering RNA targeting lipoprotein(a) production in individuals with elevated plasma lipoprotein(a) levels, JAMA, 327, 1679, 10.1001/jama.2022.5050
Rider, 2022, Pre-clinical assessment of SLN360, a novel siRNA targeting LPA, developed to address elevated lipoprotein (a) in cardiovascular disease, Atherosclerosis, 349, 240, 10.1016/j.atherosclerosis.2022.03.029
Fitzgerald, 2014, Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial, Lancet, 383, 60, 10.1016/S0140-6736(13)61914-5
Fitzgerald, 2017, A highly durable RNAi therapeutic inhibitor of PCSK9, N. Engl. J. Med., 376, 41, 10.1056/NEJMoa1609243
Ray, 2017, Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol, N. Engl. J. Med., 376, 1430, 10.1056/NEJMoa1615758
Wright, 2020, Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: an analysis of the ORION-7 and ORION-1 studies, Mayo Clin. Proc., 95, 77, 10.1016/j.mayocp.2019.08.021
Ray, 2020, Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol, N. Engl. J. Med., 382, 1507, 10.1056/NEJMoa1912387
Ray, 2023, Inclisiran and cardiovascular events: a patient-level analysis of phase III trials, Eur. Heart J., 44, 129, 10.1093/eurheartj/ehac594
Ray, 2022, Effect of inclisiran on lipids in primary prevention: the ORION-11 trial, Eur. Heart J., 43, 5047, 10.1093/eurheartj/ehac615
Luigetti, 2020, Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: current perspectives on improving patient care, Therapeut. Clin. Risk Manag., 16, 109, 10.2147/TCRM.S219979
Alcantara, 2022, Canadian guidelines for hereditary transthyretin amyloidosis polyneuropathy management, Can. J. Neurol. Sci., 49, 7, 10.1017/cjn.2021.34
Judge, 2020, Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR), Cardiovasc. Drugs Ther., 34, 357, 10.1007/s10557-019-06919-4
Coelho, 2013, Safety and efficacy of RNAi therapy for transthyretin amyloidosis, N. Engl. J. Med., 369, 819, 10.1056/NEJMoa1208760
Adams, 2018, Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis, N. Engl. J. Med., 379, 11, 10.1056/NEJMoa1716153
Obici, 2020, Quality of life outcomes in APOLLO, the phase 3 trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis, Amyloid, 27, 153, 10.1080/13506129.2020.1730790
Minamisawa, 2019, Association of patisiran, an RNA interference therapeutic, with regional left ventricular myocardial strain in hereditary transthyretin amyloidosis: the APOLLO study, JAMA Cardiol, 4, 466, 10.1001/jamacardio.2019.0849
Solomon, 2019, Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis, Circulation, 139, 431, 10.1161/CIRCULATIONAHA.118.035831
