Non-alcoholic Fatty Liver Disease: Also a Disease of the Brain? A Systematic Review of the Preclinical Evidence
Tóm tắt
Từ khóa
Tài liệu tham khảo
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431
Powell EE, Wong VW, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397(10290):2212–2224. https://doi.org/10.1016/s0140-6736(20)32511-3
Stols-Gonçalves D, Tristão LS, Henneman P, Nieuwdorp M (2019) Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease. Curr Diabetes Rep 19(6):31. https://doi.org/10.1007/s11892-019-1151-4
Day CP (2006) Non-alcoholic fatty liver disease: current concepts and management strategies. Clin Med 6(1):19–25. https://doi.org/10.7861/clinmedicine.6-1-19
Elliott C, Frith J, Day CP, Jones DE, Newton JL (2013) Functional impairment in alcoholic liver disease and non-alcoholic fatty liver disease is significant and persists over 3 years of follow-up. Dig Dis Sci 58(8):2383–2391. https://doi.org/10.1007/s10620-013-2657-2
Colognesi M, Gabbia D, De Martin S (2020) Depression and cognitive impairment-extrahepatic manifestations of NAFLD and NASH. Biomedicines. https://doi.org/10.3390/biomedicines8070229
Doward LC, Balp MM, Twiss J, Slota C, Cryer D, Brass CA et al (2021) Development of a patient-reported outcome measure for non-alcoholic steatohepatitis (NASH-CHECK): results of a qualitative study. Patient 14(5):533–543. https://doi.org/10.1007/s40271-020-00485-w
Newton JL (2010) Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis 28(1):214–219. https://doi.org/10.1159/000282089
Kjærgaard K, Mikkelsen ACD, Wernberg CW, Grønkjær LL, Eriksen PL, Damholdt MF et al (2021) Cognitive dysfunction in non-alcoholic fatty liver disease-current knowledge, mechanisms and perspectives. J Clin Med. https://doi.org/10.3390/jcm10040673
Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J et al (2018) The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons. Sci Rep. https://doi.org/10.1038/s41598-018-21399-6
Balzano T, Forteza J, Borreda I, Molina P, Giner J, Leone P et al (2018) Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol 77(9):837–845. https://doi.org/10.1093/jnen/nly061
Weinstein G, Zelber-Sagi S, Preis SR, Beiser AS, DeCarli C, Speliotes EK et al (2018) Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study. JAMA Neurol 75(1):97–104. https://doi.org/10.1001/jamaneurol.2017.3229
VanWagner LB, Terry JG, Chow LS, Alman AC, Kang H, Ingram KH et al (2017) Nonalcoholic fatty liver disease and measures of early brain health in middle-aged adults: the CARDIA study. Obesity 25(3):642–651. https://doi.org/10.1002/oby.21767
Airaghi L, Rango M, Maira D, Barbieri V, Valenti L, Lombardi R et al (2018) Subclinical cerebrovascular disease in NAFLD without overt risk factors for atherosclerosis. Atherosclerosis 268:27–31. https://doi.org/10.1016/j.atherosclerosis.2017.11.012
Takahashi A, Kono S, Wada A, Oshima S, Abe K, Imaizumi H et al (2017) Reduced brain activity in female patients with non-alcoholic fatty liver disease as measured by near-infrared spectroscopy. PLoS ONE 12(4):e0174169. https://doi.org/10.1371/journal.pone.0174169
Tuttolomondo A, Petta S, Casuccio A, Maida C, Corte VD, Daidone M et al (2018) Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study. Cardiovasc Diabetol 17(1):28. https://doi.org/10.1186/s12933-018-0670-7
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43
Amin MM, Ahmed RF, Saleh DO (2017) Methionine and choline deficient diet-induced non-alcoholic steatohepatitis in rats: role of melatonin. J Appl Pharm Sci 7(9):12–19. https://doi.org/10.7324/JAPS.2017.70902
Chen Z, Xu YY, Wu R, Han YX, Yu Y, Ge JF et al (2017) Impaired learning and memory in rats induced by a high-fat diet: involvement with the imbalance of nesfatin-1 abundance and copine 6 expression. J Neuroendocrinol. https://doi.org/10.1111/jne.12462
Chen XX, Xu YY, Wu R, Chen Z, Fang K, Han YX et al (2019) Resveratrol reduces glucolipid metabolic dysfunction and learning and memory impairment in a NAFLD rat model: Involvement in regulating the imbalance of nesfatin-1 abundance and copine 6 expression. Front Endocrinol. https://doi.org/10.3389/fendo.2019.00434
Choudhary P, Pacholko AG, Palaschuk J, Bekar LK (2018) The locus coeruleus neurotoxin, DSP4, and/or a high sugar diet induce behavioral and biochemical alterations in wild-type mice consistent with Alzheimers related pathology. Metab Brain Dis 33(5):1563–1571. https://doi.org/10.1007/s11011-018-0263-x
de la Monte SM, Tong M, Lawton M, Longato L (2009) Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol Neurodegener 4:54. https://doi.org/10.1186/1750-1326-4-54
Erbaş O, Akseki HS, Solmaz V, Aktuʇd H, Taşkiran D (2014) Fatty liver-induced changes in stereotypic behavior in rats and effects of glucagon-like peptide-1 analog on stereotypy. Kaohsiung J Med Sci 30(9):447–452. https://doi.org/10.1016/j.kjms.2014.05.007
Erbaş O, Akseki HS, Aktuğ H, Taşkıran D (2015) Low-grade chronic inflammation induces behavioral stereotypy in rats. Metab Brain Dis 30(3):739–746. https://doi.org/10.1007/s11011-014-9630-4
Gasparova Z, Janega P, Weismann P, El Falougy H, Kaprinay BT, Liptak B et al (2018) Effect of metabolic syndrome on neural plasticity and morphology of the hippocampus: correlations of neurological deficits with physiological status of the rat. Gen Physiol Biophys 37(6):619–632. https://doi.org/10.4149/gpb_2018016
Ghareeb DA, Hafez HS, Hussien HM, Kabapy NF (2011) Non-alcoholic fatty liver induces insulin resistance and metabolic disorders with development of brain damage and dysfunction. Metab Brain Dis 26(4):253–267. https://doi.org/10.1007/s11011-011-9261-y
Ghareeb DA, Khalil S, Hafez HS, Bajorath J, Ahmed HEA, Sarhan E et al (2015) Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evidence-based complementary and alternative. Medicine. https://doi.org/10.1155/2015/361847
Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N (2019) Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS ONE 14(9):e0223019. https://doi.org/10.1371/journal.pone.0223019
Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL et al (2017) Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight. https://doi.org/10.1172/jci.insight.90170
Jacobs SAH, Gart E, Vreeken D, Franx BAA, Wekking L, Verweij VGM et al (2019) Sex-specific differences in fat storage, development of non-alcoholic fatty liver disease and brain structure in juvenile hfd-induced obese ldlr-/-.Leiden mice. Nutrients. https://doi.org/10.3390/nu11081861
Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W (2016) A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica. https://doi.org/10.1155/2016/5029414
Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y et al (2020) Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res. https://doi.org/10.1186/s40364-020-00239-8
Kim DG, Krenz A, Toussaint LE, Maurer KJ, Robinson SA, Yan A et al (2016) Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflamm 13:1. https://doi.org/10.1186/s12974-015-0467-5
Lyn-Cook LE Jr, Lawton M, Tong M, Silbermann E, Longato L, Jiao P et al (2009) Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. J Alzheimers Dis 16(4):715–729. https://doi.org/10.3233/JAD-2009-0984
Minaya DM, Turlej A, Joshi A, Nagy T, Weinstein N, DiLorenzo P et al (2020) Consumption of a high energy density diet triggers microbiota dysbiosis, hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in rats. Nutr Diabetes 10(1):20. https://doi.org/10.1038/s41387-020-0119-4
Mohammed SK, Magdy YM, El-Waseef DA, Nabih ES, Hamouda MA, El-Kharashi OA (2020) Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiol Behav 214:112762. https://doi.org/10.1016/j.physbeh.2019.112762
Pan ZG, An XS (2018) SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem Biophys Res Commun 498(3):416–423. https://doi.org/10.1016/j.bbrc.2018.02.115
Pfohl M, DaSilva NA, Marques E, Agudelo J, Liu C, Goedken M et al (2021) Hepatoprotective and anti-inflammatory effects of a standardized pomegranate (Punica granatum) fruit extract in high fat diet-induced obese C57BL/6 mice. Int J Food Sci Nutr 72(4):499–510. https://doi.org/10.1080/09637486.2020.1849041
Rivera DS, Lindsay CB, Codocedo JF, Carreño LE, Cabrera D, Arrese MA et al (2018) Long-term, fructose-induced metabolic syndrome-like condition is associated with higher metabolism, reduced synaptic plasticity and cognitive impairment in Octodon degus. Mol Neurobiol 55(12):9169–9187. https://doi.org/10.1007/s12035-018-0969-0
Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB (2012) Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiol Behav 106(2):133–141. https://doi.org/10.1016/j.physbeh.2012.01.008
Strekalova T, Evans M, Costa-Nunes J, Bachurin S, Yeritsyan N, Couch Y et al (2015) Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet. Brain Behav Immun 48:42–47. https://doi.org/10.1016/j.bbi.2015.02.015
Strekalova T, Costa-Nunes JP, Veniaminova E, Kubatiev A, Lesch KP, Chekhonin VP et al (2016) Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice. J Affect Disord 196:109–116. https://doi.org/10.1016/j.jad.2016.02.045
Tengeler AC, Gart E, Wiesmann M, Arnoldussen IAC, van Duyvenvoorde W, Hoogstad M et al (2020) Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr−/−.Leiden mice. FASEB J 34(7):9575–9593. https://doi.org/10.1096/fj.202000455R
Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E et al (2020) Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci 241:117163. https://doi.org/10.1016/j.lfs.2019.117163
Xu T, Zhou J, Zhu J, Zhang S, Zhang N, Zhao Y et al (2017) Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats. Metab Brain Dis 32(2):483–491. https://doi.org/10.1007/s11011-016-9941-8
Zeltser N, Meyer I, Hernandez GV, Trahan MJ, Fanter RK, Abo-Ismail M et al (2020) Neurodegeneration in juvenile Iberian pigs with diet-induced nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 319(3):E592-e606. https://doi.org/10.1152/ajpendo.00120.2020
Zhuang P, Shou Q, Lu Y, Wang G, Qiu J, Wang J et al (2017) Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim Biophys Acta Mol Basis Dis 1863(11):2715–2726. https://doi.org/10.1016/j.bbadis.2017.07.003
Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. https://doi.org/10.1016/j.bbi.2014.04.001
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297
Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. https://doi.org/10.1038/nri.2016.123
Cai D, Liu T (2012) Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging 4(2):98–115. https://doi.org/10.18632/aging.100431
Yang QQ, Zhou JW (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67(6):1017–1035. https://doi.org/10.1002/glia.23571
Muhammad M (2020) Tumor necrosis factor alpha: a major cytokine of brain neuroinflammation. IntechOpen
Lehnardt S (2009) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. https://doi.org/10.1002/glia.20928
Reichelt AC, Westbrook RF, Morris MJ (2017) Editorial: impact of diet on learning, memory and cognition. Front Behav Neurosci 11:96. https://doi.org/10.3389/fnbeh.2017.00096
Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42(5):484–491. https://doi.org/10.1111/j.1445-5994.2012.02758.x
Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hänninen T, Soininen H et al (2006) Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 67(5):843–847. https://doi.org/10.1212/01.wnl.0000234037.91185.99
Hadjihambi A (2021) Cerebrovascular alterations in NAFLD: is it increasing our risk of Alzheimer’s disease? Anal Biochem. https://doi.org/10.1016/j.ab.2021.114387
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210
Murphy MP, Levine H (2010) Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 19(1):311–323. https://doi.org/10.3233/jad-2010-1221
Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11
Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63. https://doi.org/10.1016/j.pnpbp.2013.04.009
Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E (2002) Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 41(5):357–365. https://doi.org/10.1016/s0197-0186(02)00049-9
Brenes JC, Rodríguez O, Fornaguera J (2008) Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89(1):85–93. https://doi.org/10.1016/j.pbb.2007.11.004
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C et al (2018) Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018:9547613. https://doi.org/10.1155/2018/9547613
Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214. https://doi.org/10.1038/nrd1330
Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Springer, Berlin, pp 223–250
Zicha J, Pechánová O, Cacányiová S, Cebová M, Kristek F, Török J et al (2006) Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res 55(Suppl 1):S49-63
Fortress AM, Frick KM (2016) Hippocampal Wnt signaling. Neuroscientist 22(3):278–294. https://doi.org/10.1177/1073858415574728
Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S, Miller DW (2019) Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. https://doi.org/10.1038/s41598-019-56075-w
Jia L, Piña-Crespo J, Li Y (2019) Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. https://doi.org/10.1186/s13041-019-0525-5
Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016
Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S141–S144. https://doi.org/10.3233/jad-2012-129025
Santhekadur PK, Kumar DP, Sanyal AJ (2018) Preclinical models of non-alcoholic fatty liver disease. J Hepatol 68(2):230–237. https://doi.org/10.1016/j.jhep.2017.10.031
Abu Ahmad N, Raizman M, Weizmann N, Wasek B, Arning E, Bottiglieri T et al (2019) Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats. FASEB J 33(8):9334–9349. https://doi.org/10.1096/fj.201802683R
Im YR, Hunter H, de Gracia HD, Duret A, Cheah Q, Dong J et al (2021) A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74(4):1884–1901. https://doi.org/10.1002/hep.31897
Selhub J, Bagley LC, Miller J, Rosenberg IH (2000) B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr 71(2):614s–620s. https://doi.org/10.1093/ajcn/71.2.614s
Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Słomka M, Madro A, Celiński K et al (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepatobiliary Pancreat Surg 10(4):309–315. https://doi.org/10.1007/s00534-002-0824-5
Altinoz E, Erdemli M, Gul M, Aksungur Z, Gul S, Bag H et al (2018) Neuroprotection against CCl4 induced brain damage with crocin in Wistar rats. Biotech Histochem 93(8):623–631. https://doi.org/10.1080/10520295.2018.1519725
Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105(2):141–150. https://doi.org/10.1016/j.diabres.2014.04.006
Kendig MD, Leigh S-J, Morris MJ (2021) Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci Biobehav Rev 128:233–243. https://doi.org/10.1016/j.neubiorev.2021.05.031
Eriksen PL, Vilstrup H, Rigbolt K, Suppli MP, Sørensen M, Heebøll S et al (2019) Non-alcoholic fatty liver disease alters expression of genes governing hepatic nitrogen conversion. Liver Int 39(11):2094–2101. https://doi.org/10.1111/liv.14205
Lykke Eriksen P, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL (2019) Non-alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clin Res Hepatol Gastroenterol 43(5):551–560. https://doi.org/10.1016/j.clinre.2019.01.001
Thomsen KL, Grønbæk H, Glavind E, Hebbard L, Jessen N, Clouston A et al (2014) Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am J Physiol Gastrointest Liver Physiol 307(3):G295-301. https://doi.org/10.1152/ajpgi.00036.2014
Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5(Suppl 1):S7-s20. https://doi.org/10.1016/j.jceh.2014.06.004
Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27(1):51–58. https://doi.org/10.1007/s11011-011-9269-3