Non-alcoholic Fatty Liver Disease: Also a Disease of the Brain? A Systematic Review of the Preclinical Evidence

Anne Catrine Daugaard Mikkelsen1, Kristoffer Kjærgaard2, Rajeshwar P. Mookerjee2, Hendrik Vilstrup2, Gregers Wegener3, Cecilie Bay-Richter3, Karen Louise Thomsen4
1Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark. [email protected].
2Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
3Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
4UCL Institute of Liver and Digestive Health, University College London, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

Powell EE, Wong VW, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397(10290):2212–2224. https://doi.org/10.1016/s0140-6736(20)32511-3

Stols-Gonçalves D, Tristão LS, Henneman P, Nieuwdorp M (2019) Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease. Curr Diabetes Rep 19(6):31. https://doi.org/10.1007/s11892-019-1151-4

Day CP (2006) Non-alcoholic fatty liver disease: current concepts and management strategies. Clin Med 6(1):19–25. https://doi.org/10.7861/clinmedicine.6-1-19

Elliott C, Frith J, Day CP, Jones DE, Newton JL (2013) Functional impairment in alcoholic liver disease and non-alcoholic fatty liver disease is significant and persists over 3 years of follow-up. Dig Dis Sci 58(8):2383–2391. https://doi.org/10.1007/s10620-013-2657-2

Colognesi M, Gabbia D, De Martin S (2020) Depression and cognitive impairment-extrahepatic manifestations of NAFLD and NASH. Biomedicines. https://doi.org/10.3390/biomedicines8070229

Doward LC, Balp MM, Twiss J, Slota C, Cryer D, Brass CA et al (2021) Development of a patient-reported outcome measure for non-alcoholic steatohepatitis (NASH-CHECK): results of a qualitative study. Patient 14(5):533–543. https://doi.org/10.1007/s40271-020-00485-w

Newton JL (2010) Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis 28(1):214–219. https://doi.org/10.1159/000282089

Kjærgaard K, Mikkelsen ACD, Wernberg CW, Grønkjær LL, Eriksen PL, Damholdt MF et al (2021) Cognitive dysfunction in non-alcoholic fatty liver disease-current knowledge, mechanisms and perspectives. J Clin Med. https://doi.org/10.3390/jcm10040673

Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J et al (2018) The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons. Sci Rep. https://doi.org/10.1038/s41598-018-21399-6

Balzano T, Forteza J, Borreda I, Molina P, Giner J, Leone P et al (2018) Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol 77(9):837–845. https://doi.org/10.1093/jnen/nly061

Weinstein G, Zelber-Sagi S, Preis SR, Beiser AS, DeCarli C, Speliotes EK et al (2018) Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study. JAMA Neurol 75(1):97–104. https://doi.org/10.1001/jamaneurol.2017.3229

VanWagner LB, Terry JG, Chow LS, Alman AC, Kang H, Ingram KH et al (2017) Nonalcoholic fatty liver disease and measures of early brain health in middle-aged adults: the CARDIA study. Obesity 25(3):642–651. https://doi.org/10.1002/oby.21767

Airaghi L, Rango M, Maira D, Barbieri V, Valenti L, Lombardi R et al (2018) Subclinical cerebrovascular disease in NAFLD without overt risk factors for atherosclerosis. Atherosclerosis 268:27–31. https://doi.org/10.1016/j.atherosclerosis.2017.11.012

Takahashi A, Kono S, Wada A, Oshima S, Abe K, Imaizumi H et al (2017) Reduced brain activity in female patients with non-alcoholic fatty liver disease as measured by near-infrared spectroscopy. PLoS ONE 12(4):e0174169. https://doi.org/10.1371/journal.pone.0174169

Tuttolomondo A, Petta S, Casuccio A, Maida C, Corte VD, Daidone M et al (2018) Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study. Cardiovasc Diabetol 17(1):28. https://doi.org/10.1186/s12933-018-0670-7

Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

Amin MM, Ahmed RF, Saleh DO (2017) Methionine and choline deficient diet-induced non-alcoholic steatohepatitis in rats: role of melatonin. J Appl Pharm Sci 7(9):12–19. https://doi.org/10.7324/JAPS.2017.70902

Chen Z, Xu YY, Wu R, Han YX, Yu Y, Ge JF et al (2017) Impaired learning and memory in rats induced by a high-fat diet: involvement with the imbalance of nesfatin-1 abundance and copine 6 expression. J Neuroendocrinol. https://doi.org/10.1111/jne.12462

Chen XX, Xu YY, Wu R, Chen Z, Fang K, Han YX et al (2019) Resveratrol reduces glucolipid metabolic dysfunction and learning and memory impairment in a NAFLD rat model: Involvement in regulating the imbalance of nesfatin-1 abundance and copine 6 expression. Front Endocrinol. https://doi.org/10.3389/fendo.2019.00434

Choudhary P, Pacholko AG, Palaschuk J, Bekar LK (2018) The locus coeruleus neurotoxin, DSP4, and/or a high sugar diet induce behavioral and biochemical alterations in wild-type mice consistent with Alzheimers related pathology. Metab Brain Dis 33(5):1563–1571. https://doi.org/10.1007/s11011-018-0263-x

de la Monte SM, Tong M, Lawton M, Longato L (2009) Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol Neurodegener 4:54. https://doi.org/10.1186/1750-1326-4-54

Erbaş O, Akseki HS, Solmaz V, Aktuʇd H, Taşkiran D (2014) Fatty liver-induced changes in stereotypic behavior in rats and effects of glucagon-like peptide-1 analog on stereotypy. Kaohsiung J Med Sci 30(9):447–452. https://doi.org/10.1016/j.kjms.2014.05.007

Erbaş O, Akseki HS, Aktuğ H, Taşkıran D (2015) Low-grade chronic inflammation induces behavioral stereotypy in rats. Metab Brain Dis 30(3):739–746. https://doi.org/10.1007/s11011-014-9630-4

Gasparova Z, Janega P, Weismann P, El Falougy H, Kaprinay BT, Liptak B et al (2018) Effect of metabolic syndrome on neural plasticity and morphology of the hippocampus: correlations of neurological deficits with physiological status of the rat. Gen Physiol Biophys 37(6):619–632. https://doi.org/10.4149/gpb_2018016

Ghareeb DA, Hafez HS, Hussien HM, Kabapy NF (2011) Non-alcoholic fatty liver induces insulin resistance and metabolic disorders with development of brain damage and dysfunction. Metab Brain Dis 26(4):253–267. https://doi.org/10.1007/s11011-011-9261-y

Ghareeb DA, Khalil S, Hafez HS, Bajorath J, Ahmed HEA, Sarhan E et al (2015) Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evidence-based complementary and alternative. Medicine. https://doi.org/10.1155/2015/361847

Higarza SG, Arboleya S, Gueimonde M, Gómez-Lázaro E, Arias JL, Arias N (2019) Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS ONE 14(9):e0223019. https://doi.org/10.1371/journal.pone.0223019

Horwath JA, Hurr C, Butler SD, Guruju M, Cassell MD, Mark AL et al (2017) Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight. https://doi.org/10.1172/jci.insight.90170

Jacobs SAH, Gart E, Vreeken D, Franx BAA, Wekking L, Verweij VGM et al (2019) Sex-specific differences in fat storage, development of non-alcoholic fatty liver disease and brain structure in juvenile hfd-induced obese ldlr-/-.Leiden mice. Nutrients. https://doi.org/10.3390/nu11081861

Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W (2016) A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica. https://doi.org/10.1155/2016/5029414

Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y et al (2020) Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res. https://doi.org/10.1186/s40364-020-00239-8

Kim DG, Krenz A, Toussaint LE, Maurer KJ, Robinson SA, Yan A et al (2016) Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflamm 13:1. https://doi.org/10.1186/s12974-015-0467-5

Lyn-Cook LE Jr, Lawton M, Tong M, Silbermann E, Longato L, Jiao P et al (2009) Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. J Alzheimers Dis 16(4):715–729. https://doi.org/10.3233/JAD-2009-0984

Minaya DM, Turlej A, Joshi A, Nagy T, Weinstein N, DiLorenzo P et al (2020) Consumption of a high energy density diet triggers microbiota dysbiosis, hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in rats. Nutr Diabetes 10(1):20. https://doi.org/10.1038/s41387-020-0119-4

Mohammed SK, Magdy YM, El-Waseef DA, Nabih ES, Hamouda MA, El-Kharashi OA (2020) Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiol Behav 214:112762. https://doi.org/10.1016/j.physbeh.2019.112762

Pan ZG, An XS (2018) SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem Biophys Res Commun 498(3):416–423. https://doi.org/10.1016/j.bbrc.2018.02.115

Pfohl M, DaSilva NA, Marques E, Agudelo J, Liu C, Goedken M et al (2021) Hepatoprotective and anti-inflammatory effects of a standardized pomegranate (Punica granatum) fruit extract in high fat diet-induced obese C57BL/6 mice. Int J Food Sci Nutr 72(4):499–510. https://doi.org/10.1080/09637486.2020.1849041

Rivera DS, Lindsay CB, Codocedo JF, Carreño LE, Cabrera D, Arrese MA et al (2018) Long-term, fructose-induced metabolic syndrome-like condition is associated with higher metabolism, reduced synaptic plasticity and cognitive impairment in Octodon degus. Mol Neurobiol 55(12):9169–9187. https://doi.org/10.1007/s12035-018-0969-0

Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB (2012) Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiol Behav 106(2):133–141. https://doi.org/10.1016/j.physbeh.2012.01.008

Strekalova T, Evans M, Costa-Nunes J, Bachurin S, Yeritsyan N, Couch Y et al (2015) Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet. Brain Behav Immun 48:42–47. https://doi.org/10.1016/j.bbi.2015.02.015

Strekalova T, Costa-Nunes JP, Veniaminova E, Kubatiev A, Lesch KP, Chekhonin VP et al (2016) Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice. J Affect Disord 196:109–116. https://doi.org/10.1016/j.jad.2016.02.045

Tengeler AC, Gart E, Wiesmann M, Arnoldussen IAC, van Duyvenvoorde W, Hoogstad M et al (2020) Propionic acid and not caproic acid, attenuates nonalcoholic steatohepatitis and improves (cerebro) vascular functions in obese Ldlr−/−.Leiden mice. FASEB J 34(7):9575–9593. https://doi.org/10.1096/fj.202000455R

Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E et al (2020) Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci 241:117163. https://doi.org/10.1016/j.lfs.2019.117163

Xu T, Zhou J, Zhu J, Zhang S, Zhang N, Zhao Y et al (2017) Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats. Metab Brain Dis 32(2):483–491. https://doi.org/10.1007/s11011-016-9941-8

Zeltser N, Meyer I, Hernandez GV, Trahan MJ, Fanter RK, Abo-Ismail M et al (2020) Neurodegeneration in juvenile Iberian pigs with diet-induced nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 319(3):E592-e606. https://doi.org/10.1152/ajpendo.00120.2020

Zhuang P, Shou Q, Lu Y, Wang G, Qiu J, Wang J et al (2017) Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim Biophys Acta Mol Basis Dis 1863(11):2715–2726. https://doi.org/10.1016/j.bbadis.2017.07.003

Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. https://doi.org/10.1016/j.bbi.2014.04.001

Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297

Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. https://doi.org/10.1038/nri.2016.123

Cai D, Liu T (2012) Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging 4(2):98–115. https://doi.org/10.18632/aging.100431

Yang QQ, Zhou JW (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67(6):1017–1035. https://doi.org/10.1002/glia.23571

Muhammad M (2020) Tumor necrosis factor alpha: a major cytokine of brain neuroinflammation. IntechOpen

Lehnardt S (2009) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. https://doi.org/10.1002/glia.20928

Reichelt AC, Westbrook RF, Morris MJ (2017) Editorial: impact of diet on learning, memory and cognition. Front Behav Neurosci 11:96. https://doi.org/10.3389/fnbeh.2017.00096

Cheng G, Huang C, Deng H, Wang H (2012) Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42(5):484–491. https://doi.org/10.1111/j.1445-5994.2012.02758.x

Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hänninen T, Soininen H et al (2006) Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 67(5):843–847. https://doi.org/10.1212/01.wnl.0000234037.91185.99

Hadjihambi A (2021) Cerebrovascular alterations in NAFLD: is it increasing our risk of Alzheimer’s disease? Anal Biochem. https://doi.org/10.1016/j.ab.2021.114387

Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

Murphy MP, Levine H (2010) Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 19(1):311–323. https://doi.org/10.3233/jad-2010-1221

Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63. https://doi.org/10.1016/j.pnpbp.2013.04.009

Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E (2002) Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 41(5):357–365. https://doi.org/10.1016/s0197-0186(02)00049-9

Brenes JC, Rodríguez O, Fornaguera J (2008) Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89(1):85–93. https://doi.org/10.1016/j.pbb.2007.11.004

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008

Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C et al (2018) Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018:9547613. https://doi.org/10.1155/2018/9547613

Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214. https://doi.org/10.1038/nrd1330

Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Springer, Berlin, pp 223–250

Zicha J, Pechánová O, Cacányiová S, Cebová M, Kristek F, Török J et al (2006) Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res 55(Suppl 1):S49-63

Fortress AM, Frick KM (2016) Hippocampal Wnt signaling. Neuroscientist 22(3):278–294. https://doi.org/10.1177/1073858415574728

Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S, Miller DW (2019) Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep. https://doi.org/10.1038/s41598-019-56075-w

Jia L, Piña-Crespo J, Li Y (2019) Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. https://doi.org/10.1186/s13041-019-0525-5

Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016

Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S141–S144. https://doi.org/10.3233/jad-2012-129025

Santhekadur PK, Kumar DP, Sanyal AJ (2018) Preclinical models of non-alcoholic fatty liver disease. J Hepatol 68(2):230–237. https://doi.org/10.1016/j.jhep.2017.10.031

Abu Ahmad N, Raizman M, Weizmann N, Wasek B, Arning E, Bottiglieri T et al (2019) Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats. FASEB J 33(8):9334–9349. https://doi.org/10.1096/fj.201802683R

Im YR, Hunter H, de Gracia HD, Duret A, Cheah Q, Dong J et al (2021) A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74(4):1884–1901. https://doi.org/10.1002/hep.31897

Selhub J, Bagley LC, Miller J, Rosenberg IH (2000) B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr 71(2):614s–620s. https://doi.org/10.1093/ajcn/71.2.614s

Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Słomka M, Madro A, Celiński K et al (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepatobiliary Pancreat Surg 10(4):309–315. https://doi.org/10.1007/s00534-002-0824-5

Altinoz E, Erdemli M, Gul M, Aksungur Z, Gul S, Bag H et al (2018) Neuroprotection against CCl4 induced brain damage with crocin in Wistar rats. Biotech Histochem 93(8):623–631. https://doi.org/10.1080/10520295.2018.1519725

Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105(2):141–150. https://doi.org/10.1016/j.diabres.2014.04.006

Kendig MD, Leigh S-J, Morris MJ (2021) Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci Biobehav Rev 128:233–243. https://doi.org/10.1016/j.neubiorev.2021.05.031

Eriksen PL, Vilstrup H, Rigbolt K, Suppli MP, Sørensen M, Heebøll S et al (2019) Non-alcoholic fatty liver disease alters expression of genes governing hepatic nitrogen conversion. Liver Int 39(11):2094–2101. https://doi.org/10.1111/liv.14205

Lykke Eriksen P, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL (2019) Non-alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clin Res Hepatol Gastroenterol 43(5):551–560. https://doi.org/10.1016/j.clinre.2019.01.001

Thomsen KL, Grønbæk H, Glavind E, Hebbard L, Jessen N, Clouston A et al (2014) Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am J Physiol Gastrointest Liver Physiol 307(3):G295-301. https://doi.org/10.1152/ajpgi.00036.2014

Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5(Suppl 1):S7-s20. https://doi.org/10.1016/j.jceh.2014.06.004

Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27(1):51–58. https://doi.org/10.1007/s11011-011-9269-3

Giménez-Garzó C, Fiorillo A, Ballester-Ferré M-P, Gallego J-J, Casanova-Ferrer F, Urios A et al (2021) A new score unveils a high prevalence of mild cognitive impairment in patients with nonalcoholic fatty liver disease. J Clin Med 10(13):2806. https://doi.org/10.3390/jcm10132806