Non-Zenoness of piecewise affine dynamical systems and affine complementarity systems with inputs
Tóm tắt
In the context of continuous piecewise affine dynamical systems and affine complementarity systems with inputs, we study the existence of Zeno behavior, i.e., infinite number of mode transitions in a finite-length time interval, in this paper. The main result reveals that continuous piecewise affine dynamical systems with piecewise real-analytic inputs do not exhibit Zeno behavior. Applied the achieved result to affine complementarity systems with inputs, we also obtained a similar conclusion. A direct benefit of the main result is that one can apply smooth ordinary differential equations theory in a local manner for the analysis of continuous piecewise affine dynamical systems with inputs.
Tài liệu tham khảo
J. Zhang, K. H. Johansson, J. Lygeros, et al. Zeno hybrid systems. International Journal of Robust and Nonlinear Control, 2001, 11(5): 435–451.
K. H. Johansson, M. Egersted, J. Lygeros, et al. On the regularization of Zeno hybrid automata. Systems & Control Letters, 1999, 38(3): 141–150.
P. Brunovsky. Regular synthesis for the linear quadratic optimal control problem with linear control constraints. Journal of Differential Equations, 1980, 38(3): 344–360.
H. J. Sussman. Bounds on the number of switchings for trajectories of piecewise analytic vector fields. Journal of Differential Equations, 1982, 43(3): 399–418.
A. Lamperski, A. D. Ames. Lyapunov-like conditions for the existence of Zeno behavior in hybrid and Lagrangian hybrid systems. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007: 115–120.
A. D. Ames, A. Abate, S. S. Sastry. Sufficient conditions for the existence of Zeno behavior in a class of nonlinear hybrid systems via constant approximations. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007: 4033–4038.
A. D. Ames, H. Zhang, R. D. Gregg, et al. Is there life after Zeno? Taking executions past the breaking (Zeno) point. Proceedings of the American Control Conference. Minneapolis: IEEE, 2006: 2652–2657.
A. D. Ames, P. Tabuada, S. S. Sastry. On the Stability of Zeno Equilibria. Lecture Notes in Computer Science. Berlin: Springer- Verlag, 2006: 34–48.
A. D. Ames, S. S. Sastry. Characterization of Zeno behavior in hybrid systems using homological methods. Proceedings of American Control Conference. Portland: IEEE, 2005: 1160–1165.
R. Goebel, A. R. Teel. Lyapunov characterization of Zeno behavior in hybrid systems. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008: 2752–2757.
S. N. Simic, K. H. Johansson, J. Lygeros, et al. Towards a geometric theory of hybrid systems. Dynamics of Discrete, Continuous and Impulsive Systems, 2005, 12(5/6): 649–687.
L. Q. Thuan, M. K. Camlibel. Continuous piecewise affine dynamical systems do not exhibit Zeno behavior. IEEE Transactions on Automatic Control, 2011, 56(8): 1932–1936.
M. K. Camlibel, J. M. Schumacher. On the Zeno behavior of linear complementarity systems. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2001: 346–351.
M. K. Camlibel, W. P. M. H. Heemels, J. M. Schumacher. On linear passive complementarity systems. European Journal of Control, 2002, 8(3): 220–237.
W. P. M. H. Heemels, M. K. Camlibel, J. M. Schumacher. On the dynamic analysis of piecewise linear networks. IEEE Transactions on Circuits and Systems — I, 2002, 49(3): 315–327.
J. Shen, J. Pang. Linear complementarity systems with singleton properties: non-Zenoness. Proceedings of the American Control Conference. New York: IEEE, 2007: 2769–2774.
J. Shen, J. Pang. Linear complementarity systems: Zeno states. SIAM Journal on Control and Optimization, 2005, 44(3): 1040–1066.
M. K. Camlibel, J. S. Pang, J. Shen. Conewise linear systems: non-Zenoness and observability. SIAM Journal on Control and Optimization, 2006, 45(5): 1769–1800.
M. K. Camlibel. Well-posed bimodal piecewise linear systems do not exhibit Zeno behavior. Proceedings of 17th IFAC World Congress on Automatic Control. Seoul: IFAC, 2008: 7973–7978.
J. Shen. Robust non-Zenoness of piecewise analytic systems with applications to complementarity systems. Proceedings of the American Control Conference. Baltimore: IEEE, 2010: 148–153.
A. Y. Pogromsky, W. P. M. H. Heemels, H. Nijmeijer. On solution concepts and well-posedness of linear relay systems. Automatica, 2003, 39(12): 2139–2147.
J. M. Schumacher. Time-scaling symmetry and Zeno solutions. Automatica, 2009, 45(5): 1237–1242.
J. Pang, J. Shen. Strongly regular differential variational systems. IEEE Transactions on Automatic Control, 2007, 52(15): 1367–1386.
L. Han, J. Pang. Non-Zenoness of a class of differential quasi-variational inequalities. Mathematical Programming, 2010, 121(1): 171–199.
F. Facchinei, J. Pang. Finite Dimensional Variational Inequalities and Complementarity Problems. New York: Springer-Verlag, 2002.
K. A. Grasse, H. J. Sussmann. Global controllability by nice controls. Nonlinear Controllability and Optimal Control. New York: Marcel-Dekker, 1990: 33–79.
M. K. Camlibel. Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems. Ph.D. thesis. The Netherlands: Tilburg University, 2001.
M. K. Camlibel. Popov-belevitch-hautus type controllability tests for linear complementarity systems. Systems & Control Letters, 2007, 56(5): 381–387.
R. W. Cottle, J. Pang, R. E. Stone. The Linear Complementarity Problem. Boston: The Academic Press, 1992.
J. Pang, D. E. Stewart. Differential variational inequalities. Mathematical Progamming, 2008, 113(2): 345–424.
L. Han, A. Tiwari, M. K. Camlibel, et al. Convergence of time stepping schemes for passive and extended linear complementarity systems. SIAM Journal on Numerical Analysis, 2009, 47(5): 3768–3796.
R. Frasca, M. K. Camlibel, I. C. Goknar, et al. Linear passive networks with ideal switches: consistent initial conditions and state discontinuities. IEEE Transactions on Circuits and Systems, 2010, 57(12): 3138–3151.