Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages
Tóm tắt
This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times.
Tài liệu tham khảo
Arbula, D.: Distributed algorithm for anchor-free network localization using angle of arrival. In: Proceedings of IEEE International Symposium on Industrial Electronics, Cambridge, pp. 792–797 (2008)
Arulampalam M.S., Maskell S., Gordon N., Clapp T.: A tutorial on particle filters for online nonlinear/non Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)
Bahi, J.M., Makhoul, A., Mostefaoui, A.: A mobile beacon based approach for sensor network localization. In: Proceedings of Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, White Plains, pp. 44–51 (2007)
Ben-Gal, I.: Encyclopedia of Statistics in Quality and Reliability, Chapter Bayesian Networks. Wiley, New York (2007)
Bishop, C.M.: Pattern Recognition and Machine Learning, Chapter 8: Graphical Models. Springer, New York (2006)
Cheung-Mon-Chan, P.: Réseaux Bayésiens et Filtres Particulaires pour l’égalisation adaptative et le décodage conjoints. PhD thesis, École Nationale Supérieure des Télécommunications (2003)
Cook, B.W., Lanzisera, S., Pister, K.S.J.: Soc issues for rf smart dust. In: Proceedings of the IEEE, vol. 94, pp. 1177–1196 (2006)
Essoloh, M., Richard, C., Snoussi, H.: Localisation distribuée dans les réseaux de capteurs sans fil par résolution d’un problème quadratique. In: Colloque GRETSI Troyes (2007)
Gning, A., Mihaylova, L., Abdallah, F.: Mixture of uniform probability density functions for non linear state estimation using interval analysis. In: Proceedings of the 13th Conference on Information Fusion, Edinburgh, pp. 1–8 (2010)
Gning, A., Mihaylova, L., bdallah, F., Ristic, B.: Integrated Tracking, Classification, and Sensor Management: Theory and Applications, Chapter Particle Filtering Combined with Interval Methods for Tracking Applications. Wiley, New York (2012)
Gning A., Ristic B., Mihaylova L., Abdallah F.: An introduction to box particle filtering. IEEE Signal Process. Mag. 30(4), 166–171 (2013)
Heurtefeux, K., Valois,F.: Localisation collaborative pour réseaux de capteurs. In: Colloque Francophone sur l’Ingénierie des protocoles (CFIP) Les Arcs, France (2008)
Ihler, A.T.: Inference in sensor networks: graphical models and particle methods. PhD thesis, Massachusetts Institue of Technology (2005)
Ihler A.T., Fisher J.W., Moses R.L., Willsky A.S.: Nonparametric belief propagation for self-localization of sensor networks. IEEE J. Sel. Areas Commun. 23(4), 809–819 (2005)
Jaulin L.: Nonlinear bounded-error state estimation of continuous-time systems. Automatica 38(6), 1079–1082 (2002)
Jaulin L., Walter E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)
Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, New York (2001)
Johansen, A.M., Doucet, A.: A tutorial on particle filtering and smoothing: fifteen years later. In: The Oxford Handbook of Nonlinear Filtering, pp. 4-6 (2009)
Julier, S., Uhlmann, J., Durrant-White, H.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, Washington, DC (1995)
Kschischang F.R., Frey B.J., Loeliger H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)
Langendoen K., Reijers N.: Distributed localization in wireless sensor networks: a quantitative comparison. Comput. Netw. Int. J. Comput. Telecommun. Netw. Spec. Issue Wirel. Sens. Netw. 43(4), 499–518 (2003)
Paskin, M.A.: Exploiting locality in probabilistic inference. PhD thesis, University of california, Berkeley (2004)
Rong, P., Sichitiu, M.L.: Angle of arrival localization for wireless sensor networks. In: Proceedings of the Third annual IEEE Communications society on Sensor and Ad Hoc Communications and Networks, Reston, vol. 1, pp. 374–382 (2006)
Saad, C., Benslimane, A., Konig, J.C.: At-angle: a distributed method for localization using angles in sensor networks. In: Proceedings of IEEE Symposium on Computers and Communications, Marrakech, pp. 1190–1195 (2008)
Shang, Y., Rumel, W., Zhang, Y., Fromherz, M.: Localization from connectivity in sensor networks. In: Proceedings of IEEE Transactions on Parallel and Distributed Systems, vol. 15. pp. 961–974 (2004)
Sigal, L.: Continuous state graphical models for object localization, pose estimation and tracking. PhD thesis, Brown University, Providence (2008)
Silverman, B.W.: Density estimation for statistics and data analysis. In: Monograph on Statistics and Applied probability. Chapman and Hall, London (1986)
Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. I, pp. 605–612 (2003)
Sudderth, E.H.: Graphical models for visual object recognition and tracking. PhD thesis, Massachusetts Institute of Technology (2006)
Wan, E.A., Van der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications and Control Symposium (AS-SPCC), pp. 153–158. IEEE, Lake Louise (2000)
Welch, G., Bishop, G.: An introduction to the Kalman filter. In: Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles. ACM Press, Addison-Wesley, USA (2001)