Non-Hermitian Hydrogen atom
Tóm tắt
We have constructed a set of non-Hermitian operators that satisfy the commutation relations of the
$$SO(3)$$
-Lie algebra. Using these set of operators we have constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that includes a complex term but with the same spectra as in the Hermitian case. It is also found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In this way, we obtain a set of non-Hermitian operators that satisfy the commutation relations of the
$$SO(4)$$
-Lie algebra.
Tài liệu tham khảo
C.M. Bender, Contemp. Phys. 46, 277 (2005)
C. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
C.M. Bender, P.D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008)
R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003)
R.J. Szabo, Phys. Rept. 378, 207 (2003)
E.S. Fradkin, A.A. Tseytlin, Phys. Rept. 119, 233 (1985)
C.M. Bender, D.W. Hook, P.N. Meisinger, Q. Wang, arXiv:0912.4659 [hep-th] (2010)
D. Bazeia, A. Das, L. Greenwood, L. Losanoa, Phys. Lett. B 673, 283 (2009)
A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009)
S. Klaiman, N. Moiseyev, U. Gunther, Phys. Rev. Lett. 101, 080402 (2008)
Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)
P.A.M. Dirac, The Principles of Quantum Mechanics (Cambridge University Press, Oxford, 1930)
L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Pergamon Press, UK, 1989)
P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. I, Vol. II (McGraw-Hill, New York, 1953)
L.E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin, TX, 1980)
A. Andersen, Ann. Phys. 232, 292 (1994)