Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells

Annual Review of Materials Research - Tập 33 Số 1 - Trang 503-555 - 2003
Jacqués Rozière1, Deborah J. Jones1
1Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques UMR CNRS 5072, Université Montpellier II, 34095 Montpellier Cedex 5, France

Tóm tắt

▪ Abstract  The past 10 years have witnessed a tremendous acceleration in research devoted to non-fluorinated polymer membranes, both as competitive alternatives to commercial perfluorosulfonic acid membranes operating in the same temperature range and with the objective of extending the range of operation of polymer fuel cells toward those more generally occupied by phosphoric acid fuel cells. Important requirements are adequate membrane mechanical strength at levels of functionalization (generally sulfonation) and hydration allowing high proton conductivity, and stability in the aggressive environment of a working fuel cell, in particular thermohydrolytic and chemical stability. This review provides an overview of progress made in the development of proton-conducting hydrocarbon and heterocyclic-based polymers for proton exchange and direct methanol fuel cells and describes the various approaches made to polymer modification/synthesis and salient properties of the materials formed, including those relating to proton transport and proton conductivity, e.g., water diffusion and electro-osmotic drag. The microstructure, deduced from small angle X-ray and neutron diffraction measurements of representative non-fluorinated polymers is compared with that of perfluorosulfonic acid membranes. Different degradation mechanisms and aging processes that can result in chemical and morphological alteration are considered, and recent characterization of membrane-electrode assemblies (MEAs) in direct methanol and hydrogen-air (oxygen) fuel cells completes this review of the state of the art. While several types of non-fluorinated polymer membrane have demonstrated lifetimes of 500–4000 h, only a limited number of systems exist that hold promise for long-term operation above 100°C. 1

Từ khóa


Tài liệu tham khảo

10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G

10.1016/S0360-3199(96)00175-9

10.1016/S0167-2738(01)00911-0

Savadogo O, 1998, J. New Mater. Electrochem. Syst., 1, 47

10.1016/S0376-7388(00)00633-5

10.1016/S0376-7388(00)00632-3

Kreuer KD. 2003. InHandbook of Fuel Cell Technology, ed. W Vielstich, A Lamm, H Gasteiger, p. 420. London: Wiley & Sons

10.1016/S0079-6700(00)00032-0

Hogarth M, Glipa X. 2001. High Temperature Membranes for Solid Polymer Fuel Cells. Rep.http://www.consumer.gov.uk/renewable/pdf/f0200189.pdf, Johnson Matthey Technol. Centre

10.1016/S0151-9107(99)80030-0

10.1002/1615-6854(20020815)2:1<40::AID-FUCE40>3.0.CO;2-U

Jones DJ, Rozière J. 2003. InHandbook of Fuel Cells—Fundamentals, Technology and Applications, ed. W Vielstich, A Lamm, H Gasteiger, p. 447. London: Wiley & Sons

10.1146/annurev.matsci.33.022702.154702

Powers EJ, Serad GA. 1986. InHigh Performance Polymers: Their Origin and Development, ed. RB Seymour, GS Kirschenbaum, pp. 355–73. New York: Elsevier

10.1016/S0167-2738(97)00032-5

10.1021/j100537a021

Wainright JS, 1994, Proc. Electrochem. Soc., 94, 255

10.1149/1.2044337

10.1039/a906060j

10.1016/S0013-4686(99)00349-7

10.1002/polb.10132.abs

10.1023/A:1017558523354

Xiao L, Zhang H, Choe E-W, Scanlon E, Ramanathan LS, Benicewicz BC. 2003. PBI polymers for high-temperature PEM fuel cells. Presented at Advances in Materials for Proton Exchange Membrane Fuel Cell Systems, Asilomar, CA

Savadogo O, 2000, J. New Mater. Electrochem. Syst., 3, 345

Wainright JS, Savinell RF, Litt MH. 1997. In2nd Int. Symp. New Materials for Fuel Cell Systems, ed. O Savadogo, PR Roberge, TN Veziroglu, pp. 808–15. Montreal: Ecole Polytechnique

10.1016/S1388-2481(00)00107-7

10.1146/annurev.matsci.33.022702.155349

10.1016/0032-3861(87)90178-9

10.1016/S0360-3199(97)00113-4

10.1016/S0011-9164(02)00532-5

10.1016/S0376-7388(01)00359-3

10.1002/(SICI)1099-0518(199805)36:7<1197::AID-POLA17>3.0.CO;2-2

Steck AE, Stone C. 1997. In2nd Int. Symp. New Materials for Fuel Cell Systems, ed. O Savadogo, PR Roberge, TN Veziroglu, pp. 792–807. Montreal: Ecole Polytechnique

10.1016/S0013-4686(97)10114-1

10.1016/0032-3861(92)90980-B

10.1021/ma960768x

10.1021/cm990002m

10.1016/S0376-7388(00)00634-7

10.1016/0376-7388(93)85268-2

10.1016/S0378-7753(97)02816-4

10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.3.CO;2-I

10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A

10.1002/(SICI)1099-0518(19980715)36:9<1441::AID-POLA12>3.3.CO;2-1

10.1016/S0376-7388(97)00253-6

10.1002/pi.4980170102

Bauer B, 2000, J. New Mater. Electrochem. Syst., 3, 93

10.1016/S0376-7388(00)00345-8

10.1021/ma00050a017

10.1016/S0167-2738(97)00512-2

Kreuer KD, 1995, Proc. Electrochem. Soc., 95, 241

10.1016/S0376-7388(00)00635-9

10.1002/1615-6854(20020815)2:1<15::AID-FUCE15>3.0.CO;2-6

Soczka-Guth T, 1999, Int. Patent No. 99/29763

10.1021/cm00018a032

10.1016/0376-7388(96)00146-9

10.1002/macp.1989.021900120

10.1002/1097-4628(20010103)79:1<49::AID-APP60>3.0.CO;2-J

10.1002/(SICI)1097-4628(19960307)59:10<1607::AID-APP13>3.0.CO;2-T

10.1002/(SICI)1097-4628(19980502)68:5<827::AID-APP14>3.0.CO;2-N

10.1016/S0376-7388(98)00282-8

10.1149/1.1495916

10.1021/ma0116295

10.1016/S0376-7388(01)00702-5

10.1021/ma020330z

10.1149/1.1504901

Sansone MJ, 1990, US Patent No. 4,898,917

10.1016/0032-3861(93)90127-V

10.1021/ma00044a056

10.1016/S0167-2738(00)00596-8

Glipa X, Mula B, Jones DJ, Rozière J. 1998. InChemistry, Energy and the Environment, ed. CAC Sequeira, J Moffat, pp. 249–56. London: Royal Society of Chemistry

10.1016/S0167-2738(01)00914-6

Ogata N, Rikukawa M. 1995. US Patent No. 5,403,675

10.1016/S0376-7388(01)00620-2

Maier G, Shin C-K, Scherer GG. 2001. In1st Eur. PEFC Conference, ed. FN Büchi, GG Scherer, A Wokaun, pp. 193–202. Lucerne, Switerland: European Fuel Cell Forum

10.1557/PROC-305-49

10.1002/pol.1977.170150602

10.1002/polb.1993.090311306

Besse S, 2002, J. New Mater. Electrochem. Syst., 5, 109

Cornet N, 2000, J. New Mater. Electrochem. Syst., 3, 33

Faure S, Cornet N, Gebel G, Mercier R, Pinéri M, Sillion B. 1997. In2nd Int. Symp. New Materials for Fuel Cell Systems, ed. O Savadogo, PR Roberge, A Valeriu, pp. 818–27. Montreal: Ecole Polytechnique

10.1016/S0032-3861(00)00645-5

10.1016/S0032-3861(00)00384-0

Cornet N, Beaudoing G, Gebel G. 2001. Separation Purification Technol. 22–23:681–87

Gautier L, Chhim N, Aliouane N, Kuntz M, Touren V, et al. 2002. Set-up of an ex situ ageing procedure to reproduce fuel cell oxidation conditions: comparison of membrane stability. Presented at Proc. France-Deutschland Fuel Cell Conf., Forbach, Germany

Meyer G, Gebel G, Bardet M, Gardette J-L, Pinéri M, et al. 2002. Membrane degradation in PEMFC: study of sulfonated polyimides. Presented at Proc. France- Deutschland Fuel Cell Conf. Forbach, Germany

Zhang Y, 2000, Polym. Prep., 41, 1561

Zhang Y, 1999, Polym. Prep., 40, 480

Gunduz N, 2000, Polym. Prep., 41, 1565

Gunduz N, 2000, Polym. Prep., 41, 182

10.1021/ma020260w

Shobha HK, 2000, Polym. Prep., 41, 1298

10.1021/ma020005b

10.1016/S0167-2738(99)00181-2

10.1016/S0376-7388(00)00631-1

Kerres J, Ullrich A. 2001. Separation Purification Technol. 22–23:1–15

10.1002/(SICI)1097-4628(19991003)74:1<67::AID-APP7>3.3.CO;2-U

10.1016/S0378-7753(01)00952-1

10.1149/1.1366621

10.1016/0360-3199(93)90116-R

10.1016/S0141-3910(99)00135-4

Bonnet B, 2000, J. New Mater. Electrochem. Syst., 3, 87

Ehrenberg SG, Serpico JM, Sheikh-Ali BM, Tangredi TN, Zador E, Wnek GE. 1997. In2nd Int. Symp. New Materials for Fuel Cell Systems, ed. O Savadogo, PR Roberge, A Valeriu, pp. 828–35. Montreal: Ecole Polytechnique

10.1039/a807129b

Kreuer KD. 1998. InSolid State Ionics: Science and Technology, ed. DVR Chowdari, pp. 263–74. London: World Scientific

Deleted in proof

Paddison SJ, 2000, J. New Mater. Electrochem. Syst., 3, 291

10.1016/S0167-2738(99)00178-2

Wang J-T, 1996, J. Appl. Electrochem., 26, 751

10.1002/anie.198202082

10.1021/jp002995d

Wnek GE, 1998, Polym. Prepr., 39, 54

10.1016/S0013-4686(00)00762-3

Sheikh-Ali BM, Wnek GE. 2000. US Patent No. 6,100,616

Wnek GE, Ehrenberg SG. 2002. US Patent No. 6,413,298

10.1149/1.1473335