Noisy relativistic quantum games in noninertial frames

Quantum Information Processing - Tập 12 - Trang 1351-1363 - 2012
Salman Khan1, M. Khalid Khan2
1Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
2Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan

Tóm tắt

The influence of noise and of Unruh effect on quantum Prisoners’ dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.

Tài liệu tham khảo

Meyer D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999) Eisert J., Wilkens J., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999) Marinatto L., Weber T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000) Li H., Du J., Massar S.: Continuous-variable quantum games. Phys. Lett. A 306, 73–78 (2002) Lo C.F., Kiang D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94–98 (2004) Flitney A.P., Abbott D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002) Iqbal A., Toor A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002) Flitney A.P., Ng J., Abbott D.: Quantum Parrondo’s games. Physica A 314, 35–42 (2002) Goldenberg L., Vaidman L., Wiesner S.: Quantum gambling. Phys. Rev. Lett. 82, 3356–3359 (1999) Khan S., Ramzan M., Khan M.K.: Quantum model of Bertrand duopoly. Chin. Phys. Lett. 27, 080302 (2010) Chen L.K., Ang H., Kiang D., Kwek L.C., Lo C.F.: Quantum prisoner dilemma under decoherence. Phys. Lett. A 316, 317–323 (2003) Flitney A.P., Abbott D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449–459 (2005) Khan S., Ramzan M., Khan M.K.: Quantum Parrondo’s games under decoherence. Int. J. Theo. Phys. 49, 31–41 (2010) Alsing P.M., Fuentes-Schuller I., Mann R.B., Tessier T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006) Ling Y., He S., Qiu W., Zhang H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys. A Math. Theor. 40, 9025–9032 (2007) Gingrich R.M., Adami C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002) Pan Q., Jing J.: Degradation of nonmaximal entanglement of scalar and dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008) Fuentes-Schuller I., Mann R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005) Terashima H., Ueda M.: Relativistic Einstein-Podolsky-Rosen correlation and Bell’s inequality. Int. J. Quantum Inf. 1, 93–114 (2003) Khan S., Khan M.K.: Open quantum systems in noninertial frames. J. Phys. A Math. Theor. 44, 045305 (2011) Wang J., Jing J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010) Khan S.: Entanglement of tripartite states with decoherence in non-inertial frames. J. Mod. Opt. 59, 250–258 (2012) Khan S., Khan M.K.: Relativistic quantum games in noninertial frames. J. Phys. A Math. Theor. 44, 355302 (2011) Takagi S.: Vacuum noise and stress induced by uniform acceleration. Prog. Theor. Phys. Suppl. 88, 1–142 (1986) Alsing P.M., McMahon D., Milburn G.J.: Teleportation in a non-inertial frame. J. Opt. B Quantum Semiclass. Opt. 6, S834–S843 (2004) Aspachs M., Adesso G., Fuentes I.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett. 105, 151301 (2010) Martin-Martinez E., Garay L.J., Leon J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010) Bruschi D.E., Louko J., Martin-Martinez E., Dragan A., Fuentes I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010) Davies P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975) Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976) Benjamin S.C., Hayden P.M.: Quantum games and quantum strategies. Phys. Rev. Lett. 87, 06980 (2001) Flitney A.P., Hollenberg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)