Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels

Pierre Alquier1, Nial Friel2, Richard G. Everitt3, Aidan Boland2
1ENSAE, Paris, France
2School of Mathematical Sciences and Insight: The National Center for Data Analytics, University College Dublin, Dublin, Ireland
3Department of Mathematics and Statistics, University of Reading, Reading, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning. (2012)

Andrieu, C., Roberts, G.: The pseudo-marginal approach for efficient Monte-Carlo computations. Ann. Stat. 37(2), 697–725 (2009)

Andrieu, C., Vihola, M.: Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Preprint arXiv:1210.1484 (2012).

Bardenet, R., Doucet, A., Holmes, C.: Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach. In: Proceedings of the 31st International Conference on Machine Learning (2014)

Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139–1160 (2003)

Besag, J.E.: Spatial Interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)

Bottou, L., Bousquet, O.: The tradeoffs of large-scale learning. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 351–368. MIT Press, Cambridge (2011)

Bühlmann, P., Van de Geer, S.: Statistics for High-Dimensional Data. Springer, Berlin (2011)

Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33, 41–55 (2011)

Dalalyan, A., Tsybakov, A.B.: Sparse regression learning by aggregation and Langevin. J. Comput. Syst. Sci. 78(5), 1423–1443 (2012)

Ferré, D., Hervé, L., Ledoux, J.: Regular perturbation of $$V$$ V -geometrically ergodic Markov chains. J. Appl. Probab. 50(1), 184–194 (2013)

Friel, N., Pettitt, A.N.: Likelihood estimation and inference for the autologistic model. J. Comput. Graph. Stat. 13, 232–246 (2004)

Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Graph. Stat. 18, 243–261 (2009)

Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94, 661–672 (2007)

Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

Gilks, W., Roberts, G., George, E.: Adaptive direction sampling. Statistician 43, 179–189 (1994)

Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltoian Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B 73, 123–214 (2011)

Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

Kartashov, N.V.: Strong Stable Markov Chains. VSP, Utrecht (1996)

Korattikara, A., Chen Y., Welling, M.: Austerity in MCMC land: cutting the Metropolis–Hastings Budget. In: Proceedings of the 31st International Conference on Machine Learning, pp. 681–688 (2014)

Liang, F. Jin, I.-H.: An auxiliary variables Metropolis–Hastings algorithm for sampling from distributions with intractable normalizing constants. Technical report (2011)

Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge (1993)

Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)

Møller, J., Pettitt, A.N., Reeves, R., Berthelsen, K.K.: An efficient Markov chain Monte-Carlo method for distributions with intractable normalizing constants. Biometrika 93, 451–458 (2006)

Murray, I., Ghahramani, Z., MacKay, D.: MCMC for doubly-intractable distributions. In: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence UAI06, AUAI Press, Arlington, Virginia (2006)

Nicholls, G. K., Fox, C., Watt, A.M.: Coupled MCMC with a randomized acceptance probability. Preprint arXiv:1205.6857 (2012)

Propp, J., Wilson, D.: Exactly sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)

Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91, 751–757 (2004)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4, 337–357 (2002)

Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996a)

Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithm. Biometrika 83(1), 95–110 (1996b)

Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph models for social networks. Soc. Netw. 29(2), 169–348 (2007)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

Welling, M., Teh, Y. W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning, pp. 681–688 (2011)