Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahn, S., Korattikara, A., Welling, M.: Bayesian posterior sampling via stochastic gradient Fisher scoring. In: Proceedings of the 29th International Conference on Machine Learning. (2012)
Andrieu, C., Roberts, G.: The pseudo-marginal approach for efficient Monte-Carlo computations. Ann. Stat. 37(2), 697–725 (2009)
Andrieu, C., Vihola, M.: Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Preprint arXiv:1210.1484 (2012).
Bardenet, R., Doucet, A., Holmes, C.: Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach. In: Proceedings of the 31st International Conference on Machine Learning (2014)
Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139–1160 (2003)
Besag, J.E.: Spatial Interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)
Bottou, L., Bousquet, O.: The tradeoffs of large-scale learning. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 351–368. MIT Press, Cambridge (2011)
Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33, 41–55 (2011)
Dalalyan, A., Tsybakov, A.B.: Sparse regression learning by aggregation and Langevin. J. Comput. Syst. Sci. 78(5), 1423–1443 (2012)
Ferré, D., Hervé, L., Ledoux, J.: Regular perturbation of $$V$$ V -geometrically ergodic Markov chains. J. Appl. Probab. 50(1), 184–194 (2013)
Friel, N., Pettitt, A.N.: Likelihood estimation and inference for the autologistic model. J. Comput. Graph. Stat. 13, 232–246 (2004)
Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Graph. Stat. 18, 243–261 (2009)
Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94, 661–672 (2007)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltoian Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B 73, 123–214 (2011)
Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Korattikara, A., Chen Y., Welling, M.: Austerity in MCMC land: cutting the Metropolis–Hastings Budget. In: Proceedings of the 31st International Conference on Machine Learning, pp. 681–688 (2014)
Liang, F. Jin, I.-H.: An auxiliary variables Metropolis–Hastings algorithm for sampling from distributions with intractable normalizing constants. Technical report (2011)
Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)
Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge (1993)
Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)
Møller, J., Pettitt, A.N., Reeves, R., Berthelsen, K.K.: An efficient Markov chain Monte-Carlo method for distributions with intractable normalizing constants. Biometrika 93, 451–458 (2006)
Murray, I., Ghahramani, Z., MacKay, D.: MCMC for doubly-intractable distributions. In: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence UAI06, AUAI Press, Arlington, Virginia (2006)
Nicholls, G. K., Fox, C., Watt, A.M.: Coupled MCMC with a randomized acceptance probability. Preprint arXiv:1205.6857 (2012)
Propp, J., Wilson, D.: Exactly sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)
Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91, 751–757 (2004)
Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4, 337–357 (2002)
Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996a)
Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithm. Biometrika 83(1), 95–110 (1996b)
Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph models for social networks. Soc. Netw. 29(2), 169–348 (2007)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)
Welling, M., Teh, Y. W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning, pp. 681–688 (2011)