Noise attenuation and ridge processing technique for fingerprint bit minimization
Tóm tắt
This paper presents a model for the optimal reduction of the bit size of a fingerprint towards plummeting its storage requirement and raising the performance index of fingerprint-based applications. The model comprises of modules for fingerprint image noise attenuation, ridge contrast enhancement, map extraction, and filtering. The attenuation module uses grey value variance thresholding to suppress the noisy non-ridge and valley regions. The ridge contrast enhancement module uses block processing technique to establish equal ridge grey-level variations for the attenuated image. While the ridge map extraction module uses consistency level and locality orientation fields to extract the ridge map from the contrast enhanced image, the ridge filtering module uses Gaussian filter to cancel out all striking noise and contaminations. The experimental study of the model reveals its efficacy and practicality for fingerprint bit minimization, storage efficiency, and improved performance for any fingerprint-based application.
Tài liệu tham khảo
Sabhanayagam, T., Venkatesan, V.P., Senthamaraikannan, K.: A comprehensive survey on various biometric systems. Int. J. Appl. Eng. Res. 13(5), 2276–2297 (2018). (ISSN 0973-4562)
Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z. (Eds.): Biometric recognition. In: Proceedings of 13th Chinese conference, CCBR 2018, Urumqi, China, August 11–12, 2018. https://www.springer.com/gp/book/9783319979083 (2018). Accessed 11 Feb 2020
Belhadj, F.: Biometric System for Identification and Authentication, Doctoral Dissertation, National High School of Computer Science, Algiers (2017)
Rattani, A., Ross, A.: Automatic adaptation of fingerprint liveness detector to new spoof materials. In: Proceedings of the IEEE International Conference on Biometrics (2014)
Fournier, N.A., Ross, A.H.: Sex, ancestral, and pattern type variation of fingerprint minutiae: a forensic perspective on anthropological dermatoglyphics. Am. J. Phys. Anthropol. 160(4), 625–632 (2015)
Joshia, V.B., Ravalb, M.S.: Adaptive threshold for fingerprint recognition system based on threat level and system load, third international conference on computing and network communications. Proc. Comput. Sci. 171, 498–507 (2020)
Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., Zhang, D.: Biometric Recognition Using Deep Learning: A Survey. https://arxiv.org/pdf/1912.00271.pdf (2020)
Dakhil, I. G., Ibrahim, A. B.: Design and implementation of fingerprint identification system based on KNN neural network. J. Comput. Commun. 6, 1–18. https://m.scirp.org/papers/82894 (2018)
Iwasokun, G.B., Akinyokun, O.C., Alese, B.K., Olabode, O.: Fingerprint image enhancement: segmentation to thinning. Int. J. Adv. Comput. Sci. Appl. 3(1), 15–24 (2012)
Iwasokun, G.B., Akinyokun, O.C.: Fingerprint singular point detection based on modified Poincare index method. Int. J. Signal Process. Image Process. Pattern Recognit. 7(5), 259–272 (2014)
Iwasokun, G.B.: Fingerprint matching using minutiae-singular points network. Int. J. Signal Process. Image Process. Pattern Recognit. 8(2), 375–388 (2015)
Al-Amri, S.S., Kalyankar, N.V., Khamitkar, S.D.: Image segmentation by using edge detection. Int. J. Comput. Sci. Eng. 2(3), 804–807 (2010)
Valdes-Ramirez, D., Medina-Pérez, M. A., Monroy, R., Loyola-González, O., Rodríguez, J., Morales, A., Herrera, F.: A review of fingerprint feature representations and their applications for latent fingerprint identification: trends and evaluation. IEEE Access. 7, 1–18 (2019)
Ansal, K.A., Divya, S.J., Anju, S.K., Shanmugantham, T.: A band pass coupled line filter with DGS for ultra-wide band application, third international conference on computing and network communications. Proc. Comput. Sci. 171, 561–567 (2020)
Sharif, M., Shahzad, A., Hussain, K.: Enhanced Watershed Image Processing Segmentation. J. Inf. Commun. Technol. 2(1), (2008)
Iwasokun, G.B., Akinyokun, O.C., Angaye, C.O., Olabode, O.: A multi-level model for fingerprint enhancement. J. Pattern Recognit. Res. 7, 55–174 (2012)
Pednekar, A.S., Kakadris, I.A.: Image segmentation based on fuzzy connectedness using dynamic weights. IEEE Trans. Image Process. 15, 1555–1562 (2006)
Owoeye, K., Ajayi, A.O., Ukorigho, O.: Fingerprint database optimization using watershed transformation algorithm. Open J. Optim. 3(4), 59–67 (2014). https://doi.org/10.4236/ojop.2014.34006
Cigla, C.A., Alatan, A.: Efficient graph-based image segmentation via speeded-up turbo pixels. In: Proceedings of International Conference on Image Processing, September 26–29, Hong Kong, pp. 3013–3016 (2010)
Singh, V. K., Singh, S., Mathai, K. J.: Fingerprint segmentation: optimization of a filtering technique with Gabor filter. In: Proceedings of 4th IEEE International Conference on Communication Systems and Network Techniques, pp. 823–827 (2014)
Yabal, M. P., Gupta, H. Image segmentation using fuzzy C means clustering: a survey. Int. J. Adv. Res. Comput. Commun. Eng. 2(7), 1–7 (2013)
Cigla, C., Alatan, A. A.: Region-Based image segmentation via graph cuts. In: Proceedings of 15th IEEE International Conference on Image Processing, pp. 2272–2275 (2008)
Rajeshwar, D., Priynka, A., Swapna, D.: Image segmentation techniques. Int. J. Electron. Commun. Technol. 3(1), 66–70 (2012)
Rahini, K. K., Sudha, S. S.: Review of image segmentation techniques: a survey. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(7), 36–39 (2014)
Rajandeep, K., Anjna, A.: Review of image segmentation technique. Int. J. Adv. Res. Comput. Sci. 8(4), 36–39 (2017)
Rafael, C.G., Richard, E.W.: Digital Image Processing, 2nd edn. Publishing House of Electronics Industry, Beijing (2007)
Kaur, D., Kaur, Y.: Various image segmentation techniques: a review. Int. J. Comput. Sci. Mobile Comput. 3(5), 809–814 (2014)
Shraddha, T., Krishna, K., Singh, B. K., Singh, R. P.K.: Image segmentation: a review. Int. J. Comput. Sci. Manag. Res. 1(4), 838–843 (2012)
Khokher, M.R., Ghafoor, A., Siddiqui, A.M.: Image segmentation using multilevel graph cuts and graph development using fuzzy rule-based system. IET Image Proc. 7(3), 201–211 (2013)
Senthikumaran, N.: Generic algorithm approach to edge detection for dental X-ray image segmentation. Int. J. Adv. Res. Comput. Sci. Electron. Eng. 1(7), 179–182 (2012)
Ali, M. M. H., Mahale, V. H., Yannawar, P., Gaikwad, A. T.: Overview of fingerprint recognition system. In: Proceedings of International Conference on Electrical, Electronics and Optimization Techniques, pp. 1334–1338 (2016)
Kamei, T., Mizoguchi, M.: Image filter design for fingerprint enhancement. In: Proceedings of International Symposium on Computer Vision, Coral Cables, Finland, pp. 109–114 (1995)
Jain, A., Prabhakar, S.: Filterbank based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)
Hong, L., Wan, Y., Jain, K.: Image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)
Okereafor, K., Ekong, I., Markson, I. O., Enwere, K.: Fingerprint Biometric System Hygiene and the Risk of COVID-19 Transmission, JMIR Biomed. Eng. 5(1), 1–15. http://biomedeng.jmir.org/2020/1/e19623/ (2020). Accessed 06 Jan 2021
Karoui, I., Fablet, R., Boucher, J. M., Augustin, J. M.: Unsupervised region-based image segmentation using texture statistics and level-set methods. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing (2007)
Zhou, Y. M., Jiang, S. Y., Yin, M. L.: A region-based image segmentation method with mean-shift clustering algorithm. In: Proceedings of 5th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 366–370 (2008)
Iwasokun, G.B., Akinyokun, O.C., Olabode, O.: A mathematical modeling approach to fingerprint ridge segmentation and normalization. Int. J. Comput. Sci. Inf. Technol. Secur. 2(2), 263–267 (2012)
Yuanyuan, Z.: Fingerprint image enhancement based on elliptical shape Gabor filter. In: Proceedings of 6th IEEE International Conference Intelligent Systems, pp. 344–348 (2012)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Computer Vision and Pattern Recognition. https://arxiv.org/pdf/1412.7062.pdf (2016)
Thai, D. H., Huckemann, S., Gottschlich, C.: Filter design and performance evaluation for fingerprint image segmentation. PLoS One 11(5), (2016). https://doi.org/10.1371/journal.pone.0154160
Yang, W., Wang, S., Hu, J., Zheng, G., Valli, C.: Security and accuracy of fingerprint-based biometrics: a review. Symmetry 11, 141 (2019)
Kumar, M., Priyanka, K.: Fingerprint recognition system: issues and challenges. Int. J. Res. Appl. Sci. Eng. Technol. 6(2). www.ijraset.com (2018)
Akinyokun, O. C., Iwasokun, G. B., Angaye, O. C.: Fingerprint matching using inter-distance between core and minutiae points. In: Proceedings of 7th International Conference on ICT Applications, National Defense College, Abuja, Nigeria, September 2–6, 2012, pp. 33–39 (2012)
Iwasokun, G.B., Akinyokun, O.C., Angaye, C.O.: Fingerprint matching using neighbourhood distinctiveness. Int. J. Comput. Appl. 66(21), 1–12 (2013)
Perez-Diaz, A.J., Arronte-Lopez, I.C.: Fingerprint matching and non-matching analysis for different tolerance rotation degrees in commercial matching algorithms. J. Appl. Res. Technol. 8(2), 186–199 (2010)
Praseetha, V.M., Bayezeed, S., Vadivel, S.: Secure fingerprint authentication using deep learning and minutiae verification. J. Intelligent. Syst. 29(1), 1379–1387 (2020)
Uliyan, D.M., Sadeghi, S., Jalab, H.A.: Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Int. J. Eng. Sci. Technol. 23, 264–273 (2020)
Omed, H. A., Joan, L., Muzhir, S. A.: Human identification based on thinning minutiae of fingerprint. J. Theor. Appl. Inf. Technol. 96(17), 5918–5929
Ain, N. U., Shaukat, F., Nagra, A. S., Raja, G.: An efficient algorithm for fingerprint recognition using minutiae extraction. Pakistan J. Sci. 70(2), 169–176 (2018)
Phan, A. C., Tran, H. D., Phan, T. C.: Fingerprint recognition using Gabor wavelet in MapReduce and spark. In: Proceedings of SoICT, December 6–7, 2018, Da Nang City, Vietnam, Association for Computing Machinery (2018)
Shrivastava, A., Srivastava, D.K.: A partition based novel approach in AFIS for forensics and security. Proc. Comput. Sci. 78(2016), 771–778 (2016)
Gowthami, A.T., Mamatha, H.R.: Fingerprint recognition using zone based linear binary patterns. Proc. Comput. Sci. 58, 552–557 (2015)
Marak, P., Hambalık, A.: Fingerprint recognition system using artificial neural network as feature extractor: design and performance evaluation. Tatra Mt. Math. Publ. 67, 117–134 (2016)