Nociception and role of immune system in pain

Acta Neurologica Belgica - Tập 115 Số 3 - Trang 213-220 - 2015
Vivek Verma1, Zeeshan Sheikh2, Ahad S. Ahmed1
1Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
2Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baranauskas G, Nistri A (1998) Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog Neurobiol 54:349–365

Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nature Med 16(11):1267–1276

Hackel D, Pflücke D, Neumann A, Viebahn J, Mousa S, Wischmeyer E, Roewer N, Brack A, Rittner HL (2013) The connection of monocytes and reactive oxygen species in pain. PLoS ONE 8(5):2

Schaible HG, Richter F (2004) Pathophysiology of pain. Langenbecks Arch Surg 389:237–243

Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66(1):80–101. doi: 10.1124/pr.113.008144 . Print 2014. Review. PubMed PMID: 24335193; PubMed Central PMCID: PMC3880465

Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315. doi: 10.3389/fnins.2014.00315 . eCollection 2014. Review. PubMed PMID: 25339862; PubMed Central PMCID: PMC4188030

Ren K, Torres R. (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60(1):57–64. doi: 10.1016/j.brainresrev.2008.12.020 . Epub 2008 Dec 31. Review. PubMed PMID: 19166877; PubMed Central PMCID: PMC3076185

Stannus OP, Jones G, Blizzard L, Cicuttini FM, Ding C (2013) Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis 72(4):535–40. doi: 10.1136/annrheumdis-2011-201047 . Epub 2012 May 12. PubMed PMID: 22580582

Otmishi P, Gordon J, El-Oshar S, Li H, Guardiola J, Saad M, Proctor M, Yu J (2008) Neuroimmune interaction in inflammatory diseases. Clin Med Circ Respirat Pulm Med 2:35–44. PubMed PMID: 21157520; PubMed Central PMCID: PMC2990232

Eskandari F, Webster JI, Sternberg EM (2003) Review: neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 5(6):251–265

Cutolo M, Wilder RL (2000) Review: different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheum Dis Clin North Am 26(4):825–839

Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev. 1996 Aug;17(4):369–84. Review. PubMed PMID: 8854050

Voscopoulos C, Lema M (2010) When does acute pain become chronic? Br J Anaesth 105(Suppl 1):i69–i85

Kin NW, Sanders VM (2006) Review: it takes nerve to tell T and B cells what to do. J Leukoc Biol 79(6):1093–1104

Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

Momin A, McNaughton PA (2009) Regulation of firing frequency in nociceptive neurons by pro-inflammatory mediators. Experimental Brain Res 196:45–52

Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735

Miller RJ, Jung H, Bhangoo SK et al (2009) Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 194:417–449

Watson JJ, Allen SJ, Dawbarn D (2008) Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs 22:349–359

Chatterjea D, Martinov T (2014) Mast cells: versatile gatekeepers of pain. Mol Immunol. pii: S0161–5890(14)00054–6. doi: 10.1016/j.molimm.2014.03.001 . [Epub ahead of print]

Shubayev VI et al (2006) TNFα-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci 31:407–415

Gómez-Nicola D, Valle-Argos B, Suardíaz M, Taylor JS, Nieto-Sampedro M (2008) Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. J Neurochem 107:1741–1752

Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302(3):839–845

Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, Bennett DL (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 30:5437–5450

Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336

Thalakoti S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023

Zhang J, Shi XQ, Echeverry S, Mogil JS, De KY, Rivest S (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406

Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, Choi SY, Park K, Kim JS, Akira S, Na HS, Oh SB, Lee SJ (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983

Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K (2009) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci USA 106:8032–8037

Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194

Sweitzer SM, White KA, Dutta C, DeLeo JA (2002) The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol 125:82–93

Cao L, Palmer CD, Malon JT, De Leo JA (2009) Critical role of microglial CD40 in the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain. Eur J Immunol 39:3562–3569

Thalakoti S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023

Vit JP, Ohara PT, Bhargava A, Kelley K, Jasmin L (2008) Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci 28:4161–4171

Capuano A et al (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5:43

Mifflin KA, Kerr BJ (2014) The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 61(2):112–122

Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 157(5):683–694

Oka Y et al (2007) Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145:530–538

Wei F, Guo W, Zou S, Ren K, Dubner R (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495

Guo W et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

Ahrens C, Schiltenwolf M, Wang H (2012) Cytokines in psychoneuroendocrine immunological context of nonspecific musculoskeletal pain. Schmerz 26(4):383–388

Jessop DS et al (2010) Endomorphins in rheumatoid arthritis, osteoarthritis, and experimental arthritis. Ann NY Acad Sci 1193:117–122

Khodorova A et al (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055–1061

Stein C (1993) Peripheral mechanisms of opioid analgesia. Anesth Analg 76:182–191

Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73:141–162

Svensson CI, Zattoni M, Serhan CN (2007) Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J Exp Med 204:245–252

Yoo S, Lim JY, Hwang SW (2013) Resolvins: endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives. Curr Neuropharmacol 11(6):664–676

Xu ZZ, Liu XJ, Berta T, Park CK, Lü N, Serhan CN, Ji RR (2013) Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol 74(3):490–5. doi: 10.1002/ana.23928 . Epub 2013 Sep 4

Zylka MJ et al (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122

Chen Y et al (2008) Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci USA 105:16773–16778

Grace PM, Hutchinson MR, Maier SF, Watkins LR (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14:217–231. doi: 10.1038/nri3621

Yoon SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224

Listing J et al (2005) Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum 52:L3403–L3412

Torres R et al (2009) Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis 68:1602–1608

Soderquist RG et al (2010) Release of plasmid DNA encoding IL-10 from PLGA microparticles facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm Res 27:841–854

Serrano A, Paré M, McIntosh F, Elmes SJ, Martino G, Jomphe C, Lessard E, Lembo PM, Vaillancourt F, Perkins MN, Cao CQ (2010) Blocking spinal CCR2 with AZ889 reversed hyperalgesia in a model of neuropathic pain. Mol Pain 6:90

Biswas K, Aya T, Qian W, Peterkin TA, Chen JJ, Human J, Hungate RW, Kumar G, Arik L, Lester-Zeiner D, Biddlecome G, Manning BH, Sun H, Dong H, Huang M, Loeloff R, Johnson EJ, Askew BC (2008) Aryl sulfones as novel bradykinin B1 receptor antagonists for treatment of chronic pain. Bioorg Med Chem Lett 17:4764–4769

Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M (2010) Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 14:1710–1726

Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 104(25):10655–10660

Ting E et al (2008) Role of complement C5a in mechanical inflammatory hypernociception: potential use of C5a receptor antagonists to control inflammatory pain. Br J Pharmacol 153:1043–1053

Abdelmoaty S, Wigerblad G, Bas DB, Codeluppi S, Fernandez-Zafra T, El-Awady el-S, Moustafa Y, Abdelhamid Ael-D, Brodin E, Svensson CI (2013) Spinal actions of lipoxin A4 and 17(R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. PLoS ONE 8(9):e75543

Block BM, Hurley RW, Raja SN (2004) Mechanism-based therapies for pain. Drug News Perspect 17(3):172–186