Zhang, 2010, J. Phys. Chem. C, 114, 14662, 10.1021/jp105483a
Zhang, 2010, Int. J. Hydrogen Energy, 35, 12405, 10.1016/j.ijhydene.2010.08.018
Shimoda, 2011, J. Mater. Chem., 21, 2609, 10.1039/c0jm02828b
Wang, 2014, Adv. Funct. Mater., 24, 7073, 10.1002/adfm.201401731
Zou, 2014, J. Mater. Chem. A, 2, 4682, 10.1039/c3ta15191c
Su, 2013, Chem. Commun., 49, 8217, 10.1039/c3cc43772h
Tian, 2015, Angew. Chem., Int. Ed., 10.1002/anie.201501237
Wang, 2012, J. Mater. Chem., 22, 12468, 10.1039/c2jm32229c
Yan, 2008, Angew. Chem., Int. Ed., 47, 2287, 10.1002/anie.200704943
Wang, 2014, Chem. Commun., 50, 2732, 10.1039/c3cc49821b
Song-II, 2014, Int. J. Hydrogen Energy, 39, 3755, 10.1016/j.ijhydene.2013.12.135
Wang, 2014, Int. J. Hydrogen Energy, 39, 4850, 10.1016/j.ijhydene.2013.12.148
Liu, 2015, Nanoscale, 7, 3130, 10.1039/C4NR06295G
Feng, 2015, ACS Appl. Mater. Interfaces, 7, 980, 10.1021/am507811a
Wang, 2013, J. Mater. Chem. A, 1, 14957, 10.1039/c3ta13259e
Wang, 2014, J. Mater. Chem. A, 2, 7439, 10.1039/C4TA00354C
Wang, 2013, J. Mater. Chem. A, 1, 12721, 10.1039/c3ta12531a
Wang, 2014, Nanoscale, 6, 3073, 10.1039/c3nr05809c
Wang, 2012, Sci. Rep., 2, 598, 10.1038/srep00598
Wu, 2012, ChemPlusChem, 77, 931, 10.1002/cplu.201200159
Wu, 2014, ChemSusChem, 7, 2654, 10.1002/cssc.201402180
Yan, 2010, J. Am. Chem. Soc., 132, 5326, 10.1021/ja910513h
Yan, 2010, J. Power Sources, 195, 1091, 10.1016/j.jpowsour.2009.08.067
Yan, 2009, Inorg. Chem., 48, 7389, 10.1021/ic900921m
Wang, 2012, Energy Environ. Sci., 5, 6885, 10.1039/c2ee03344e
Wang, 2013, Angew. Chem., Int. Ed., 52, 4406, 10.1002/anie.201301009
Balat, 2008, Int. J. Hydrogen Energy, 33, 4013, 10.1016/j.ijhydene.2008.05.047
Wang, 2014, Renewable Sustainable Energy Rev., 29, 573, 10.1016/j.rser.2013.08.090
Turner, 1999, Science, 285, 687, 10.1126/science.285.5428.687
Trancik, 2014, Nature, 507, 300, 10.1038/507300a
Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987
Marshall, 2007, Energy, 32, 431, 10.1016/j.energy.2006.07.014
Wang, 2012, Energy Environ. Sci., 5, 6763, 10.1039/c2ee03309g
Thoi, 2013, Chem. Soc. Rev., 42, 2388, 10.1039/C2CS35272A
Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d
Huang, 2013, Nano Energy, 2, 1337, 10.1016/j.nanoen.2013.06.016
Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C
Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A
Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a
Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c
Mcpherson, 2014, J. Braz. Chem. Soc., 25, 427
Eckenhoff, 2013, Biochim. Biophys. Acta, 1827, 958, 10.1016/j.bbabio.2013.05.003
Kaur-Ghumaan, 2014, Dalton Trans., 43, 9392, 10.1039/c4dt00539b
Hallenbeck, 2002, Int. J. Hydrogen Energy, 27, 1185, 10.1016/S0360-3199(02)00131-3
Burgess, 1996, Chem. Rev., 96, 2983, 10.1021/cr950055x
Eady, 1996, Chem. Rev., 96, 3013, 10.1021/cr950057h
Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x
Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Jaramillo, 2008, J. Phys. Chem. C, 112, 17492, 10.1021/jp802695e
Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868
Kibsgaard, 2014, Nat. Chem., 6, 248, 10.1038/nchem.1853
Wang, 2013, Chem. – Eur. J., 19, 11939, 10.1002/chem.201301406
Zhang, 2014, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F
Lau, 2011, ChemCatChem, 3, 1739, 10.1002/cctc.201100212
Lau, 2012, Chem. – Eur. J., 18, 8230, 10.1002/chem.201200255
Wang, 2014, J. Power Sources, 264, 229, 10.1016/j.jpowsour.2014.04.066
Benck, 2014, ACS Catal., 4, 3957, 10.1021/cs500923c
Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s
Ambrosi, 2015, Small, 11, 605, 10.1002/smll.201400401
Chia, 2014, Chem. – Eur. J., 20, 1, 10.1002/chem.201390210
Wu, 2013, ACS Catal., 3, 2101, 10.1021/cs400384h
Wang, 2013, Electrochem. Commun., 34, 219, 10.1016/j.elecom.2013.06.018
Gopalakrishnan, 2014, ACS Nano, 8, 5297, 10.1021/nn501479e
Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685
Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b
Chung, 2014, Nanoscale, 6, 2131, 10.1039/C3NR05228A
Lu, 2014, Adv. Mater., 26, 2683, 10.1002/adma.201304759
Yu, 2014, Nano Lett., 14, 553, 10.1021/nl403620g
Shi, 2014, ACS Nano, 8, 10196, 10.1021/nn503211t
Zhang, 2014, ACS Nano, 8, 8617, 10.1021/nn503412w
Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439
Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476
Tan, 2014, Adv. Mater., 26, 8023, 10.1002/adma.201403808
Lu, 2013, Chem. Commun., 49, 7516, 10.1039/c3cc44143a
Yang, 2014, Adv. Mater., 26, 8163, 10.1002/adma.201402847
Bonde, 2008, Faraday Discuss., 140, 219, 10.1039/B803857K
Zhang, 2014, ChemSusChem, 7, 2489, 10.1002/cssc.201402372
Lv, 2013, RSC Adv., 3, 21231, 10.1039/c3ra42340a
Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J
Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110
Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q
Zhou, 2014, J. Mater. Chem. A, 2, 11358, 10.1039/c4ta01898b
Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b
Zheng, 2014, Chem. Mater., 26, 2344, 10.1021/cm500347r
Firmiano, 2012, Chem. Commun., 48, 7687, 10.1039/c2cc33397j
Yan, 2013, Chem. Commun., 49, 4884, 10.1039/c3cc41031e
Yan, 2013, Nanoscale, 5, 7768, 10.1039/c3nr02994h
Deng, 2014, RSC Adv., 4, 34733, 10.1039/C4RA05614K
Zhu, 2014, J. Mater. Chem. A, 2, 7680, 10.1039/c4ta01004c
Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144
Liao, 2013, Adv. Funct. Mater., 23, 5326, 10.1002/adfm.201300318
Bian, 2012, Electrochem. Commun., 22, 128, 10.1016/j.elecom.2012.06.009
Hou, 2014, J. Mater. Chem. A, 2, 13795, 10.1039/C4TA02254H
Ma, 2014, Nanoscale, 6, 5624, 10.1039/c3nr04975b
Yan, 2015, J. Mater. Chem. A, 3, 131, 10.1039/C4TA04858J
Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v
Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E
Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022
Vrubel, 2013, ACS Catal., 3, 2002, 10.1021/cs400441u
Murugesan, 2013, ACS Nano, 7, 8199, 10.1021/nn4036624
Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b
Benck, 2012, ACS Catal., 2, 1916, 10.1021/cs300451q
Casalongue, 2014, J. Phys. Chem. C, 118, 29252, 10.1021/jp505394e
Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d
Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a
Laursen, 2013, Chem. Commun., 49, 4965, 10.1039/c3cc41945b
Vrubel, 2013, Chem. Commun., 49, 8985, 10.1039/c3cc45416a
Chen, 2015, Nano Energy, 11, 11, 10.1016/j.nanoen.2014.09.022
Pu, 2014, J. Power Sources, 263, 181, 10.1016/j.jpowsour.2014.03.093
Ge, 2014, Adv. Mater., 26, 3100, 10.1002/adma.201305678
Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920
Chang, 2014, Small, 10, 895, 10.1002/smll.201302407
Chang, 2014, ACS Appl. Mater. Interfaces, 6, 17679, 10.1021/am5039592
Wang, 2013, Energy Environ. Sci., 6, 625, 10.1039/C2EE23513G
Wang, 2014, Adv. Mater., 26, 3761, 10.1002/adma.201400265
Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700
Yang, 2013, Angew. Chem., Int. Ed., 52, 13751, 10.1002/anie.201307475
Cheng, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315
Choi, 2013, Nano Res., 6, 921, 10.1007/s12274-013-0369-8
Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013
Pu, 2014, Electrochim. Acta, 134, 8, 10.1016/j.electacta.2014.04.092
Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h
Giovanni, 2014, ACS Catal., 4, 681, 10.1021/cs4011698
Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h
Tang, 2015, Electrochim. Acta, 153, 508, 10.1016/j.electacta.2014.12.043
Cui, 2014, Electrochim. Acta, 137, 504, 10.1016/j.electacta.2014.06.035
Faber, 2014, J. Phys. Chem. C, 118, 21347, 10.1021/jp506288w
Faber, 2014, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w
Peng, 2014, Angew. Chem., Int. Ed., 53, 12594, 10.1002/anie.201408876
Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764
Zou, 2014, Nanoscale, 6, 11046, 10.1039/C4NR02716G
Saadi, 2014, ACS Catal., 4, 2866, 10.1021/cs500412u
Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t
Wang, 2013, Nano Lett., 13, 3426, 10.1021/nl401944f
Mao, 2014, Small, 11, 414, 10.1002/smll.201401598
Velazquez, 2014, J. Electroanal. Chem., 716, 45, 10.1016/j.jelechem.2013.11.030
Jia, 2015, Adv. Funct. Mater., 25, 1814, 10.1002/adfm.201401814
Tsai, 2014, Phys. Chem. Chem. Phys., 16, 13156, 10.1039/C4CP01237B
Gao, 2012, J. Mater. Chem., 22, 13662, 10.1039/c2jm31916k
Kong, 2014, J. Am. Chem. Soc., 136, 4897, 10.1021/ja501497n
Carim, 2014, J. Mater. Chem. A, 2, 13835, 10.1039/C4TA02611J
Liu, 2015, ACS Appl. Mater. Interfaces, 7, 3877, 10.1021/am509185x
Xu, 2013, Angew. Chem., Int. Ed., 52, 8546, 10.1002/anie.201303495
Kiran, 2014, Nanoscale, 6, 12856, 10.1039/C4NR03716B
Xu, 2014, ACS Nano, 8, 8468, 10.1021/nn503027k
Xu, 2014, J. Mater. Chem. A, 2, 5597, 10.1039/C4TA00458B
Levy, 1973, Science, 181, 547, 10.1126/science.181.4099.547
Montgomery, 1974, Science, 184, 563, 10.1126/science.184.4136.562
Vrubel, 2012, Angew. Chem., Int. Ed., 51, 12703, 10.1002/anie.201207111
Wan, 2014, Angew. Chem., Int. Ed., 53, 6407, 10.1002/anie.201402998
Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C
Xiao, 2014, Appl. Catal., B, 154, 232, 10.1016/j.apcatb.2014.02.020
Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h
Pan, 2014, Chem. Commun., 50, 13135, 10.1039/C4CC05698A
Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144
Alhajri, 2014, J. Mater. Chem. A, 2, 10548, 10.1039/C4TA00577E
Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f
Cui, 2014, ACS Catal., 4, 2658, 10.1021/cs5005294
Wirth, 2012, Appl. Catal., B, 126, 225, 10.1016/j.apcatb.2012.07.023
Yang, 2012, ACS Catal., 2, 765, 10.1021/cs300081t
Hunt, 2014, Angew. Chem., Int. Ed., 53, 5131, 10.1002/anie.201400294
Garcia-Esparza, 2013, ChemSusChem, 6, 168, 10.1002/cssc.201200780
Harnisch, 2009, Appl. Catal., B, 89, 455, 10.1016/j.apcatb.2009.01.003
Zheng, 2005, Electrochem. Commun., 7, 1045, 10.1016/j.elecom.2005.07.011
Weidman, 2012, J. Power Sources, 202, 11, 10.1016/j.jpowsour.2011.10.093
Nikiforov, 2012, Int. J. Hydrogen Energy, 37, 18591, 10.1016/j.ijhydene.2012.09.112
Zhao, 2013, Angew. Chem., Int. Ed., 52, 13638, 10.1002/anie.201307527
Chen, 2014, ChemSusChem, 7, 2414, 10.1002/cssc.201402454
Zhang, 2014, ChemCatChem, 6, 2059, 10.1002/cctc.201402000
Michalsky, 2014, ACS Catal., 4, 1274, 10.1021/cs500056u
Ge, 2014, Electrochim. Acta, 134, 182, 10.1016/j.electacta.2014.04.113
Kimmel, 2012, Int. J. Hydrogen Energy, 37, 3019, 10.1016/j.ijhydene.2011.11.079
Anićijević, 2013, Int. J. Hydrogen Energy, 38, 16071, 10.1016/j.ijhydene.2013.09.079
Esposito, 2011, Energy Environ. Sci., 4, 3900, 10.1039/c1ee01851e
Esposito, 2012, J. Am. Chem. Soc., 134, 3025, 10.1021/ja208656v
Kelly, 2014, J. Power Sources, 271, 76, 10.1016/j.jpowsour.2014.07.179
Vasić, 2013, Int. J. Hydrogen Energy, 38, 5009, 10.1016/j.ijhydene.2013.02.020
Kelly, 2013, Int. J. Hydrogen Energy, 38, 5638, 10.1016/j.ijhydene.2013.02.116
Hsu, 2012, Chem. Commun., 48, 1063, 10.1039/C1CC15812K
Ham, 2008, Int. J. Hydrogen Energy, 33, 6865, 10.1016/j.ijhydene.2008.05.045
Liu, 2012, Int. J. Hydrogen Energy, 37, 8929, 10.1016/j.ijhydene.2012.03.044
Ma, 2007, Int. J. Hydrogen Energy, 32, 2824, 10.1016/j.ijhydene.2006.12.022
Wu, 2007, J. Power Sources, 166, 310, 10.1016/j.jpowsour.2006.12.108
Yan, 2012, Small, 8, 3350, 10.1002/smll.201200877
Esposito, 2010, Angew. Chem., Int. Ed., 49, 9859, 10.1002/anie.201004718
Kelly, 2012, Chem. Soc. Rev., 41, 8021, 10.1039/c2cs35165j
Dong, 2013, Coord. Chem. Rev., 257, 1946, 10.1016/j.ccr.2012.12.012
Hargreaves, 2013, Coord. Chem. Rev., 257, 2015, 10.1016/j.ccr.2012.10.005
Ham, 2009, Energies, 2, 873, 10.3390/en20400873
Furimsky, 2003, Appl. Catal., A, 240, 1, 10.1016/S0926-860X(02)00428-3
Chen, 2012, Angew. Chem., Int. Ed., 91, 6131, 10.1002/anie.201200699
Cao, 2013, J. Am. Chem. Soc., 135, 19186, 10.1021/ja4081056
Xie, 2014, Chem. Sci., 5, 4615, 10.1039/C4SC02019G
Shi, 2015, Electrochim. Acta, 154, 345, 10.1016/j.electacta.2014.12.096
Liu, 2005, J. Am. Chem. Soc., 127, 14871, 10.1021/ja0540019
Oyama, 2009, Catal. Today, 143, 94, 10.1016/j.cattod.2008.09.019
Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e
Feng, 2014, Phys. Chem. Chem. Phys., 16, 5917, 10.1039/c4cp00482e
Pu, 2014, Nanoscale, 6, 11031, 10.1039/C4NR03037K
Kucernak, 2014, J. Mater. Chem. A, 2, 17435, 10.1039/C4TA03468F
Huang, 2014, ACS Nano, 8, 8121, 10.1021/nn5022204
Jiang, 2014, Nanoscale, 6, 13440, 10.1039/C4NR04866K
Jin, 2014, J. Mater. Chem. A, 2, 18593, 10.1039/C4TA04434G
Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646
Liu, 2014, Angew. Chem., Int. Ed., 53, 6710, 10.1002/anie.201404161
Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r
Li, 2014, Int. J. Hydrogen Energy, 39, 16806, 10.1016/j.ijhydene.2014.08.099
Pu, 2014, Chem. Mater., 26, 4326, 10.1021/cm501273s
Gu, 2014, Phys. Chem. Chem. Phys., 16, 16909, 10.1039/C4CP02613F
Du, 2014, J. Mater. Chem. A, 2, 14812, 10.1039/C4TA02368D
Jiang, 2014, J. Mater. Chem. A, 2, 14634, 10.1039/C4TA03261F
Huang, 2014, Nano Energy, 9, 373, 10.1016/j.nanoen.2014.08.013
Lu, 2014, Int. J. Hydrogen Energy, 39, 18919, 10.1016/j.ijhydene.2014.09.104
Saadi, 2014, J. Phys. Chem. C, 118, 29294, 10.1021/jp5054452
Xu, 2013, Chem. Commun., 49, 6656, 10.1039/c3cc43107j
Callejas, 2014, ACS Nano, 8, 11101, 10.1021/nn5048553
Jiang, 2014, Angew. Chem., Int. Ed., 53, 1, 10.1002/anie.201310509
Liang, 2014, ACS Catal., 4, 4065, 10.1021/cs501106g
Zhang, 2014, Chem. Commun., 50, 11554, 10.1039/C4CC05285D
Tian, 2014, ACS Appl. Mater. Interfaces, 6, 20579, 10.1021/am5064684
Tian, 2014, Angew. Chem., Int. Ed., 53, 9577, 10.1002/anie.201403842
Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F
Xing, 2014, Adv. Mater., 26, 5702, 10.1002/adma.201401692
Cui, 2015, Appl. Catal., B, 164, 144, 10.1016/j.apcatb.2014.09.016
Kibsgaard, 2014, Angew. Chem., Int. Ed., 53, 1, 10.1002/anie.201408222
McEnaney, 2014, Chem. Mater., 26, 4826, 10.1021/cm502035s
McEnaney, 2014, Chem. Commun., 50, 11026, 10.1039/C4CC04709E
Pu, 2014, ACS Appl. Mater. Interfaces, 6, 21874, 10.1021/am5060178
Xing, 2015, ACS Catal., 5, 145, 10.1021/cs5014943
Sathe, 2014, Catal. Sci. Technol., 4, 2023, 10.1039/C4CY00075G
Zheng, 2014, ACS Nano, 8, 5290, 10.1021/nn501434a
Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783
Zou, 2014, Angew. Chem., Int. Ed., 53, 4372, 10.1002/anie.201311111
Gao, 2015, Nanoscale, 7, 2306, 10.1039/C4NR04924A
Deng, 2014, Energy Environ. Sci., 7, 1919, 10.1039/C4EE00370E
Cui, 2014, Chem. Commun., 50, 9340, 10.1039/C4CC02713B
Ran, 2014, Chem. Soc. Rev., 43, 7787, 10.1039/C3CS60425J
Liao, 2014, Nat. Nanotechnol., 9, 69, 10.1038/nnano.2013.272
Zhang, 2013, Small, 9, 996, 10.1002/smll.201202156
Yu, 2014, Int. J. Hydrogen Energy, 39, 13105, 10.1016/j.ijhydene.2014.06.148
Zou, 2014, Appl. Catal., B, 150–151, 466, 10.1016/j.apcatb.2013.12.047
Lei, 2015, Appl. Catal., A, 493, 58, 10.1016/j.apcata.2015.01.011
Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G
Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825
Zong, 2010, J. Phys. Chem. C, 114, 1963, 10.1021/jp904350e
Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777
Zhang, 2014, Chem. – Eur. J., 20, 10632, 10.1002/chem.201402522
Chen, 2012, Appl. Catal., A, 443–444, 138, 10.1016/j.apcata.2012.07.033
Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945
Li, 2014, J. Phys. Chem. C, 118, 19842, 10.1021/jp5054474
Yang, 2014, ACS Nano, 8, 6979, 10.1021/nn501807y
Liu, 2014, Chem. Commun., 50, 11004, 10.1039/C4CC04653F
Zhu, 2014, J. Mater. Chem. A, 2, 3819, 10.1039/C3TA14819J
Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b
Lu, 2014, Catal. Sci. Technol., 4, 2650, 10.1039/C4CY00331D
Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e
Tian, 2014, Chem. – Asian J., 9, 1291, 10.1002/asia.201301646
Chen, 2014, Appl. Catal., B, 160, 614, 10.1016/j.apcatb.2014.05.028
Wei, 2014, Appl. Catal., B, 144, 521, 10.1016/j.apcatb.2013.07.064
Liu, 2015, Appl. Catal., B, 164, 1, 10.1016/j.apcatb.2014.08.046
Zhao, 2014, J. Phys. Chem. C, 118, 14238, 10.1021/jp504005x
Nakagawa, 2014, Chem. Commun., 50, 13702, 10.1039/C4CC04726E
Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294
Wang, 2014, J. Mater. Chem. A, 2, 7960, 10.1039/C4TA00275J
Tang, 2011, Angew. Chem., Int. Ed., 50, 10203, 10.1002/anie.201104412
Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h
Hong, 2013, ChemSusChem, 6, 2263, 10.1002/cssc.201300647
Li, 2013, Int. J. Hydrogen Energy, 38, 11268, 10.1016/j.ijhydene.2013.06.067
Chen, 2014, J. Phys. Chem. C, 118, 7801, 10.1021/jp5000232
Zhang, 2012, Int. J. Hydrogen Energy, 37, 17060, 10.1016/j.ijhydene.2012.08.120
Yin, 2014, RSC Adv., 4, 6127, 10.1039/c3ra46362a
Wang, 2012, Appl. Surf. Sci., 259, 118, 10.1016/j.apsusc.2012.07.003
Zhu, 2014, Int. J. Hydrogen Energy, 39, 11873, 10.1016/j.ijhydene.2014.06.025
Yu, 2014, Int. J. Hydrogen Energy, 39, 15387, 10.1016/j.ijhydene.2014.07.165
Cao, 2014, Chem. Commun., 50, 10427, 10.1039/C4CC05026F
Lin, 2014, Chem. Sci., 5, 4906, 10.1039/C4SC01811G
Bourgeteau, 2013, Energy Environ. Sci., 6, 2706, 10.1039/c3ee41321g
Tran, 2012, Chem. – Eur. J., 18, 13994, 10.1002/chem.201202214
Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585
Laursen, 2013, Phys. Chem. Chem. Phys., 15, 20000, 10.1039/c3cp52890a
Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673
Huang, 2014, ACS Appl. Mater. Interfaces, 6, 10408, 10.1021/am501940x
Gao, 2014, Nano Lett., 14, 3715, 10.1021/nl404540f
Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059
Yang, 2014, Nanoscale, 6, 6506, 10.1039/C4NR00386A
Berglund, 2014, J. Am. Chem. Soc., 136, 1535, 10.1021/ja411604k
McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p
McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p
Zou, 2013, J. Am. Chem. Soc., 135, 17242, 10.1021/ja407174u
Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018
Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e
Zhao, 2014, Nanoscale, 6, 7255, 10.1039/c4nr00002a