Noble metal-free hydrogen evolution catalysts for water splitting

Chemical Society Reviews - Tập 44 Số 15 - Trang 5148-5180
Xiaoxin Zou1,2,3,4,5, Yu Zhang6,7,8,9,10
1Changchun 130012
2College of Chemistry
3International Joint Research Laboratory of Nano-Micro Architecture Chemistry
4Jilin University
5State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
6Beihang University
7Beijing
8International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P.R. China
9Key laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, BeiHang University, Beijing, P. R. China
10School of Chemistry and Environment

Tóm tắt

This review summarizes the recent research efforts toward noble metal-free hydrogen evolution electrocatalysts.

Từ khóa


Tài liệu tham khảo

Zhang, 2010, J. Phys. Chem. C, 114, 14662, 10.1021/jp105483a

Zhang, 2010, Int. J. Hydrogen Energy, 35, 12405, 10.1016/j.ijhydene.2010.08.018

Shimoda, 2011, J. Mater. Chem., 21, 2609, 10.1039/c0jm02828b

Wang, 2014, Adv. Funct. Mater., 24, 7073, 10.1002/adfm.201401731

Zou, 2014, J. Mater. Chem. A, 2, 4682, 10.1039/c3ta15191c

Su, 2013, Chem. Commun., 49, 8217, 10.1039/c3cc43772h

Tian, 2015, Angew. Chem., Int. Ed., 10.1002/anie.201501237

Wang, 2012, J. Mater. Chem., 22, 12468, 10.1039/c2jm32229c

Yan, 2008, Angew. Chem., Int. Ed., 47, 2287, 10.1002/anie.200704943

Wang, 2014, Chem. Commun., 50, 2732, 10.1039/c3cc49821b

Song-II, 2014, Int. J. Hydrogen Energy, 39, 3755, 10.1016/j.ijhydene.2013.12.135

Wang, 2014, Int. J. Hydrogen Energy, 39, 4850, 10.1016/j.ijhydene.2013.12.148

Liu, 2015, Nanoscale, 7, 3130, 10.1039/C4NR06295G

Feng, 2015, ACS Appl. Mater. Interfaces, 7, 980, 10.1021/am507811a

Wang, 2013, J. Mater. Chem. A, 1, 14957, 10.1039/c3ta13259e

Wang, 2014, J. Mater. Chem. A, 2, 7439, 10.1039/C4TA00354C

Wang, 2013, J. Mater. Chem. A, 1, 12721, 10.1039/c3ta12531a

Wang, 2014, Nanoscale, 6, 3073, 10.1039/c3nr05809c

Wang, 2012, Sci. Rep., 2, 598, 10.1038/srep00598

Wu, 2012, ChemPlusChem, 77, 931, 10.1002/cplu.201200159

Wu, 2014, ChemSusChem, 7, 2654, 10.1002/cssc.201402180

Yan, 2010, J. Am. Chem. Soc., 132, 5326, 10.1021/ja910513h

Yan, 2010, J. Power Sources, 195, 1091, 10.1016/j.jpowsour.2009.08.067

Yan, 2009, Inorg. Chem., 48, 7389, 10.1021/ic900921m

Wang, 2012, Energy Environ. Sci., 5, 6885, 10.1039/c2ee03344e

Wang, 2013, Angew. Chem., Int. Ed., 52, 4406, 10.1002/anie.201301009

Balat, 2008, Int. J. Hydrogen Energy, 33, 4013, 10.1016/j.ijhydene.2008.05.047

Wang, 2014, Renewable Sustainable Energy Rev., 29, 573, 10.1016/j.rser.2013.08.090

Turner, 1999, Science, 285, 687, 10.1126/science.285.5428.687

Trancik, 2014, Nature, 507, 300, 10.1038/507300a

Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987

Marshall, 2007, Energy, 32, 431, 10.1016/j.energy.2006.07.014

Wang, 2012, Energy Environ. Sci., 5, 6763, 10.1039/c2ee03309g

Thoi, 2013, Chem. Soc. Rev., 42, 2388, 10.1039/C2CS35272A

Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d

Huang, 2013, Nano Energy, 2, 1337, 10.1016/j.nanoen.2013.06.016

Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A

Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a

Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c

Mcpherson, 2014, J. Braz. Chem. Soc., 25, 427

Eckenhoff, 2013, Biochim. Biophys. Acta, 1827, 958, 10.1016/j.bbabio.2013.05.003

Kaur-Ghumaan, 2014, Dalton Trans., 43, 9392, 10.1039/c4dt00539b

Hallenbeck, 2002, Int. J. Hydrogen Energy, 27, 1185, 10.1016/S0360-3199(02)00131-3

Burgess, 1996, Chem. Rev., 96, 2983, 10.1021/cr950055x

Eady, 1996, Chem. Rev., 96, 3013, 10.1021/cr950057h

Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Jaramillo, 2008, J. Phys. Chem. C, 112, 17492, 10.1021/jp802695e

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Kibsgaard, 2014, Nat. Chem., 6, 248, 10.1038/nchem.1853

Wang, 2013, Chem. – Eur. J., 19, 11939, 10.1002/chem.201301406

Zhang, 2014, Energy Environ. Sci., 7, 3302, 10.1039/C4EE01932F

Lau, 2011, ChemCatChem, 3, 1739, 10.1002/cctc.201100212

Lau, 2012, Chem. – Eur. J., 18, 8230, 10.1002/chem.201200255

Wang, 2014, J. Power Sources, 264, 229, 10.1016/j.jpowsour.2014.04.066

Benck, 2014, ACS Catal., 4, 3957, 10.1021/cs500923c

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Ambrosi, 2015, Small, 11, 605, 10.1002/smll.201400401

Chia, 2014, Chem. – Eur. J., 20, 1, 10.1002/chem.201390210

Wu, 2013, ACS Catal., 3, 2101, 10.1021/cs400384h

Wang, 2013, Electrochem. Commun., 34, 219, 10.1016/j.elecom.2013.06.018

Gopalakrishnan, 2014, ACS Nano, 8, 5297, 10.1021/nn501479e

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Yan, 2013, ACS Appl. Mater. Interfaces, 5, 12794, 10.1021/am404843b

Chung, 2014, Nanoscale, 6, 2131, 10.1039/C3NR05228A

Lu, 2014, Adv. Mater., 26, 2683, 10.1002/adma.201304759

Yu, 2014, Nano Lett., 14, 553, 10.1021/nl403620g

Shi, 2014, ACS Nano, 8, 10196, 10.1021/nn503211t

Zhang, 2014, ACS Nano, 8, 8617, 10.1021/nn503412w

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476

Tan, 2014, Adv. Mater., 26, 8023, 10.1002/adma.201403808

Lu, 2013, Chem. Commun., 49, 7516, 10.1039/c3cc44143a

Yang, 2014, Adv. Mater., 26, 8163, 10.1002/adma.201402847

Bonde, 2008, Faraday Discuss., 140, 219, 10.1039/B803857K

Zhang, 2014, ChemSusChem, 7, 2489, 10.1002/cssc.201402372

Lv, 2013, RSC Adv., 3, 21231, 10.1039/c3ra42340a

Sun, 2014, Nanoscale, 6, 8359, 10.1039/C4NR01894J

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Zhou, 2014, J. Mater. Chem. A, 2, 11358, 10.1039/c4ta01898b

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Zheng, 2014, Chem. Mater., 26, 2344, 10.1021/cm500347r

Firmiano, 2012, Chem. Commun., 48, 7687, 10.1039/c2cc33397j

Yan, 2013, Chem. Commun., 49, 4884, 10.1039/c3cc41031e

Yan, 2013, Nanoscale, 5, 7768, 10.1039/c3nr02994h

Deng, 2014, RSC Adv., 4, 34733, 10.1039/C4RA05614K

Zhu, 2014, J. Mater. Chem. A, 2, 7680, 10.1039/c4ta01004c

Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144

Liao, 2013, Adv. Funct. Mater., 23, 5326, 10.1002/adfm.201300318

Bian, 2012, Electrochem. Commun., 22, 128, 10.1016/j.elecom.2012.06.009

Hou, 2014, J. Mater. Chem. A, 2, 13795, 10.1039/C4TA02254H

Ma, 2014, Nanoscale, 6, 5624, 10.1039/c3nr04975b

Yan, 2015, J. Mater. Chem. A, 3, 131, 10.1039/C4TA04858J

Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022

Vrubel, 2013, ACS Catal., 3, 2002, 10.1021/cs400441u

Murugesan, 2013, ACS Nano, 7, 8199, 10.1021/nn4036624

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Benck, 2012, ACS Catal., 2, 1916, 10.1021/cs300451q

Casalongue, 2014, J. Phys. Chem. C, 118, 29252, 10.1021/jp505394e

Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a

Laursen, 2013, Chem. Commun., 49, 4965, 10.1039/c3cc41945b

Vrubel, 2013, Chem. Commun., 49, 8985, 10.1039/c3cc45416a

Chen, 2015, Nano Energy, 11, 11, 10.1016/j.nanoen.2014.09.022

Pu, 2014, J. Power Sources, 263, 181, 10.1016/j.jpowsour.2014.03.093

Ge, 2014, Adv. Mater., 26, 3100, 10.1002/adma.201305678

Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920

Chang, 2014, Small, 10, 895, 10.1002/smll.201302407

Chang, 2014, ACS Appl. Mater. Interfaces, 6, 17679, 10.1021/am5039592

Wang, 2013, Energy Environ. Sci., 6, 625, 10.1039/C2EE23513G

Wang, 2014, Adv. Mater., 26, 3761, 10.1002/adma.201400265

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Yang, 2013, Angew. Chem., Int. Ed., 52, 13751, 10.1002/anie.201307475

Cheng, 2014, Angew. Chem., Int. Ed., 53, 7860, 10.1002/anie.201402315

Choi, 2013, Nano Res., 6, 921, 10.1007/s12274-013-0369-8

Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013

Pu, 2014, Electrochim. Acta, 134, 8, 10.1016/j.electacta.2014.04.092

Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h

Giovanni, 2014, ACS Catal., 4, 681, 10.1021/cs4011698

Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h

Tang, 2015, Electrochim. Acta, 153, 508, 10.1016/j.electacta.2014.12.043

Cui, 2014, Electrochim. Acta, 137, 504, 10.1016/j.electacta.2014.06.035

Faber, 2014, J. Phys. Chem. C, 118, 21347, 10.1021/jp506288w

Faber, 2014, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w

Peng, 2014, Angew. Chem., Int. Ed., 53, 12594, 10.1002/anie.201408876

Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764

Zou, 2014, Nanoscale, 6, 11046, 10.1039/C4NR02716G

Saadi, 2014, ACS Catal., 4, 2866, 10.1021/cs500412u

Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t

Wang, 2013, Nano Lett., 13, 3426, 10.1021/nl401944f

Mao, 2014, Small, 11, 414, 10.1002/smll.201401598

Velazquez, 2014, J. Electroanal. Chem., 716, 45, 10.1016/j.jelechem.2013.11.030

Jia, 2015, Adv. Funct. Mater., 25, 1814, 10.1002/adfm.201401814

Tsai, 2014, Phys. Chem. Chem. Phys., 16, 13156, 10.1039/C4CP01237B

Gao, 2012, J. Mater. Chem., 22, 13662, 10.1039/c2jm31916k

Kong, 2014, J. Am. Chem. Soc., 136, 4897, 10.1021/ja501497n

Carim, 2014, J. Mater. Chem. A, 2, 13835, 10.1039/C4TA02611J

Liu, 2015, ACS Appl. Mater. Interfaces, 7, 3877, 10.1021/am509185x

Xu, 2013, Angew. Chem., Int. Ed., 52, 8546, 10.1002/anie.201303495

Kiran, 2014, Nanoscale, 6, 12856, 10.1039/C4NR03716B

Xu, 2014, ACS Nano, 8, 8468, 10.1021/nn503027k

Xu, 2014, J. Mater. Chem. A, 2, 5597, 10.1039/C4TA00458B

Levy, 1973, Science, 181, 547, 10.1126/science.181.4099.547

Montgomery, 1974, Science, 184, 563, 10.1126/science.184.4136.562

Vrubel, 2012, Angew. Chem., Int. Ed., 51, 12703, 10.1002/anie.201207111

Wan, 2014, Angew. Chem., Int. Ed., 53, 6407, 10.1002/anie.201402998

Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C

Xiao, 2014, Appl. Catal., B, 154, 232, 10.1016/j.apcatb.2014.02.020

Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h

Pan, 2014, Chem. Commun., 50, 13135, 10.1039/C4CC05698A

Youn, 2014, ACS Nano, 8, 5164, 10.1021/nn5012144

Alhajri, 2014, J. Mater. Chem. A, 2, 10548, 10.1039/C4TA00577E

Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f

Cui, 2014, ACS Catal., 4, 2658, 10.1021/cs5005294

Wirth, 2012, Appl. Catal., B, 126, 225, 10.1016/j.apcatb.2012.07.023

Yang, 2012, ACS Catal., 2, 765, 10.1021/cs300081t

Hunt, 2014, Angew. Chem., Int. Ed., 53, 5131, 10.1002/anie.201400294

Garcia-Esparza, 2013, ChemSusChem, 6, 168, 10.1002/cssc.201200780

Harnisch, 2009, Appl. Catal., B, 89, 455, 10.1016/j.apcatb.2009.01.003

Zheng, 2005, Electrochem. Commun., 7, 1045, 10.1016/j.elecom.2005.07.011

Weidman, 2012, J. Power Sources, 202, 11, 10.1016/j.jpowsour.2011.10.093

Nikiforov, 2012, Int. J. Hydrogen Energy, 37, 18591, 10.1016/j.ijhydene.2012.09.112

Zhao, 2013, Angew. Chem., Int. Ed., 52, 13638, 10.1002/anie.201307527

Chen, 2014, ChemSusChem, 7, 2414, 10.1002/cssc.201402454

Zhang, 2014, ChemCatChem, 6, 2059, 10.1002/cctc.201402000

Michalsky, 2014, ACS Catal., 4, 1274, 10.1021/cs500056u

Ge, 2014, Electrochim. Acta, 134, 182, 10.1016/j.electacta.2014.04.113

Kimmel, 2012, Int. J. Hydrogen Energy, 37, 3019, 10.1016/j.ijhydene.2011.11.079

Anićijević, 2013, Int. J. Hydrogen Energy, 38, 16071, 10.1016/j.ijhydene.2013.09.079

Esposito, 2011, Energy Environ. Sci., 4, 3900, 10.1039/c1ee01851e

Esposito, 2012, J. Am. Chem. Soc., 134, 3025, 10.1021/ja208656v

Kelly, 2014, J. Power Sources, 271, 76, 10.1016/j.jpowsour.2014.07.179

Vasić, 2013, Int. J. Hydrogen Energy, 38, 5009, 10.1016/j.ijhydene.2013.02.020

Kelly, 2013, Int. J. Hydrogen Energy, 38, 5638, 10.1016/j.ijhydene.2013.02.116

Hsu, 2012, Chem. Commun., 48, 1063, 10.1039/C1CC15812K

Ham, 2008, Int. J. Hydrogen Energy, 33, 6865, 10.1016/j.ijhydene.2008.05.045

Liu, 2012, Int. J. Hydrogen Energy, 37, 8929, 10.1016/j.ijhydene.2012.03.044

Ma, 2007, Int. J. Hydrogen Energy, 32, 2824, 10.1016/j.ijhydene.2006.12.022

Wu, 2007, J. Power Sources, 166, 310, 10.1016/j.jpowsour.2006.12.108

Yan, 2012, Small, 8, 3350, 10.1002/smll.201200877

Esposito, 2010, Angew. Chem., Int. Ed., 49, 9859, 10.1002/anie.201004718

Kelly, 2012, Chem. Soc. Rev., 41, 8021, 10.1039/c2cs35165j

Dong, 2013, Coord. Chem. Rev., 257, 1946, 10.1016/j.ccr.2012.12.012

Hargreaves, 2013, Coord. Chem. Rev., 257, 2015, 10.1016/j.ccr.2012.10.005

Ham, 2009, Energies, 2, 873, 10.3390/en20400873

Furimsky, 2003, Appl. Catal., A, 240, 1, 10.1016/S0926-860X(02)00428-3

Chen, 2012, Angew. Chem., Int. Ed., 91, 6131, 10.1002/anie.201200699

Cao, 2013, J. Am. Chem. Soc., 135, 19186, 10.1021/ja4081056

Xie, 2014, Chem. Sci., 5, 4615, 10.1039/C4SC02019G

Shi, 2015, Electrochim. Acta, 154, 345, 10.1016/j.electacta.2014.12.096

Liu, 2005, J. Am. Chem. Soc., 127, 14871, 10.1021/ja0540019

Oyama, 2009, Catal. Today, 143, 94, 10.1016/j.cattod.2008.09.019

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Feng, 2014, Phys. Chem. Chem. Phys., 16, 5917, 10.1039/c4cp00482e

Pu, 2014, Nanoscale, 6, 11031, 10.1039/C4NR03037K

Kucernak, 2014, J. Mater. Chem. A, 2, 17435, 10.1039/C4TA03468F

Huang, 2014, ACS Nano, 8, 8121, 10.1021/nn5022204

Jiang, 2014, Nanoscale, 6, 13440, 10.1039/C4NR04866K

Jin, 2014, J. Mater. Chem. A, 2, 18593, 10.1039/C4TA04434G

Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646

Liu, 2014, Angew. Chem., Int. Ed., 53, 6710, 10.1002/anie.201404161

Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r

Li, 2014, Int. J. Hydrogen Energy, 39, 16806, 10.1016/j.ijhydene.2014.08.099

Pu, 2014, Chem. Mater., 26, 4326, 10.1021/cm501273s

Gu, 2014, Phys. Chem. Chem. Phys., 16, 16909, 10.1039/C4CP02613F

Du, 2014, J. Mater. Chem. A, 2, 14812, 10.1039/C4TA02368D

Jiang, 2014, J. Mater. Chem. A, 2, 14634, 10.1039/C4TA03261F

Huang, 2014, Nano Energy, 9, 373, 10.1016/j.nanoen.2014.08.013

Lu, 2014, Int. J. Hydrogen Energy, 39, 18919, 10.1016/j.ijhydene.2014.09.104

Saadi, 2014, J. Phys. Chem. C, 118, 29294, 10.1021/jp5054452

Xu, 2013, Chem. Commun., 49, 6656, 10.1039/c3cc43107j

Callejas, 2014, ACS Nano, 8, 11101, 10.1021/nn5048553

Jiang, 2014, Angew. Chem., Int. Ed., 53, 1, 10.1002/anie.201310509

Liang, 2014, ACS Catal., 4, 4065, 10.1021/cs501106g

Zhang, 2014, Chem. Commun., 50, 11554, 10.1039/C4CC05285D

Tian, 2014, ACS Appl. Mater. Interfaces, 6, 20579, 10.1021/am5064684

Tian, 2014, Angew. Chem., Int. Ed., 53, 9577, 10.1002/anie.201403842

Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F

Xing, 2014, Adv. Mater., 26, 5702, 10.1002/adma.201401692

Cui, 2015, Appl. Catal., B, 164, 144, 10.1016/j.apcatb.2014.09.016

Kibsgaard, 2014, Angew. Chem., Int. Ed., 53, 1, 10.1002/anie.201408222

McEnaney, 2014, Chem. Mater., 26, 4826, 10.1021/cm502035s

McEnaney, 2014, Chem. Commun., 50, 11026, 10.1039/C4CC04709E

Pu, 2014, ACS Appl. Mater. Interfaces, 6, 21874, 10.1021/am5060178

Xing, 2015, ACS Catal., 5, 145, 10.1021/cs5014943

Sathe, 2014, Catal. Sci. Technol., 4, 2023, 10.1039/C4CY00075G

Zheng, 2014, ACS Nano, 8, 5290, 10.1021/nn501434a

Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783

Zou, 2014, Angew. Chem., Int. Ed., 53, 4372, 10.1002/anie.201311111

Gao, 2015, Nanoscale, 7, 2306, 10.1039/C4NR04924A

Deng, 2014, Energy Environ. Sci., 7, 1919, 10.1039/C4EE00370E

Cui, 2014, Chem. Commun., 50, 9340, 10.1039/C4CC02713B

Ran, 2014, Chem. Soc. Rev., 43, 7787, 10.1039/C3CS60425J

Liao, 2014, Nat. Nanotechnol., 9, 69, 10.1038/nnano.2013.272

Zhang, 2013, Small, 9, 996, 10.1002/smll.201202156

Yu, 2014, Int. J. Hydrogen Energy, 39, 13105, 10.1016/j.ijhydene.2014.06.148

Zou, 2014, Appl. Catal., B, 150–151, 466, 10.1016/j.apcatb.2013.12.047

Lei, 2015, Appl. Catal., A, 493, 58, 10.1016/j.apcata.2015.01.011

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Zong, 2010, J. Phys. Chem. C, 114, 1963, 10.1021/jp904350e

Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777

Zhang, 2014, Chem. – Eur. J., 20, 10632, 10.1002/chem.201402522

Chen, 2012, Appl. Catal., A, 443–444, 138, 10.1016/j.apcata.2012.07.033

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Li, 2014, J. Phys. Chem. C, 118, 19842, 10.1021/jp5054474

Yang, 2014, ACS Nano, 8, 6979, 10.1021/nn501807y

Liu, 2014, Chem. Commun., 50, 11004, 10.1039/C4CC04653F

Zhu, 2014, J. Mater. Chem. A, 2, 3819, 10.1039/C3TA14819J

Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b

Lu, 2014, Catal. Sci. Technol., 4, 2650, 10.1039/C4CY00331D

Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e

Tian, 2014, Chem. – Asian J., 9, 1291, 10.1002/asia.201301646

Chen, 2014, Appl. Catal., B, 160, 614, 10.1016/j.apcatb.2014.05.028

Wei, 2014, Appl. Catal., B, 144, 521, 10.1016/j.apcatb.2013.07.064

Liu, 2015, Appl. Catal., B, 164, 1, 10.1016/j.apcatb.2014.08.046

Zhao, 2014, J. Phys. Chem. C, 118, 14238, 10.1021/jp504005x

Nakagawa, 2014, Chem. Commun., 50, 13702, 10.1039/C4CC04726E

Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294

Wang, 2014, J. Mater. Chem. A, 2, 7960, 10.1039/C4TA00275J

Tang, 2011, Angew. Chem., Int. Ed., 50, 10203, 10.1002/anie.201104412

Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h

Hong, 2013, ChemSusChem, 6, 2263, 10.1002/cssc.201300647

Li, 2013, Int. J. Hydrogen Energy, 38, 11268, 10.1016/j.ijhydene.2013.06.067

Chen, 2014, J. Phys. Chem. C, 118, 7801, 10.1021/jp5000232

Zhang, 2012, Int. J. Hydrogen Energy, 37, 17060, 10.1016/j.ijhydene.2012.08.120

Yin, 2014, RSC Adv., 4, 6127, 10.1039/c3ra46362a

Wang, 2012, Appl. Surf. Sci., 259, 118, 10.1016/j.apsusc.2012.07.003

Zhu, 2014, Int. J. Hydrogen Energy, 39, 11873, 10.1016/j.ijhydene.2014.06.025

Yu, 2014, Int. J. Hydrogen Energy, 39, 15387, 10.1016/j.ijhydene.2014.07.165

Cao, 2014, Chem. Commun., 50, 10427, 10.1039/C4CC05026F

Lin, 2014, Chem. Sci., 5, 4906, 10.1039/C4SC01811G

Bourgeteau, 2013, Energy Environ. Sci., 6, 2706, 10.1039/c3ee41321g

Tran, 2012, Chem. – Eur. J., 18, 13994, 10.1002/chem.201202214

Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585

Laursen, 2013, Phys. Chem. Chem. Phys., 15, 20000, 10.1039/c3cp52890a

Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673

Huang, 2014, ACS Appl. Mater. Interfaces, 6, 10408, 10.1021/am501940x

Gao, 2014, Nano Lett., 14, 3715, 10.1021/nl404540f

Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059

Yang, 2014, Nanoscale, 6, 6506, 10.1039/C4NR00386A

Berglund, 2014, J. Am. Chem. Soc., 136, 1535, 10.1021/ja411604k

McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p

McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p

Zou, 2013, J. Am. Chem. Soc., 135, 17242, 10.1021/ja407174u

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Zou, 2013, Chem. Commun., 49, 7522, 10.1039/c3cc42891e

Zhao, 2014, Nanoscale, 6, 7255, 10.1039/c4nr00002a